18 research outputs found

    The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010

    Get PDF
    Recent laboratory and field studies have indicated that glyoxal is a potentially large contributor to secondary organic aerosol mass. We present in situ glyoxal measurements acquired with a recently developed, high sensitivity spectroscopic instrument during the CalNex 2010 field campaign in Pasadena, California. We use three methods to quantify the production and loss of glyoxal in Los Angeles and its contribution to organic aerosol. First, we calculate the difference between steady state sources and sinks of glyoxal at the Pasadena site, assuming that the remainder is available for aerosol uptake. Second, we use the Master Chemical Mechanism to construct a two-dimensional model for gas-phase glyoxal chemistry in Los Angeles, assuming that the difference between the modeled and measured glyoxal concentration is available for aerosol uptake. Third, we examine the nighttime loss of glyoxal in the absence of its photochemical sources and sinks. Using these methods we constrain the glyoxal loss to aerosol to be 0-5 × 10-5 s-1 during clear days and (1 ± 0.3) × 10-5 s-1 at night. Between 07:00-15:00 local time, the diurnally averaged secondary organic aerosol mass increases from 3.2 μg m-3 to a maximum of 8.8 μg m -3. The constraints on the glyoxal budget from this analysis indicate that it contributes 0-0.2 μg m-3 or 0-4% of the secondary organic aerosol mass. Copyright 2011 by the American Geophysical Union

    The "Statinth" wonder of the world: a panacea for all illnesses or a bubble about to burst

    Get PDF
    After the introduction of statins in the market as effective lipid lowering agents, they were shown to have effects other than lipid lowering. These actions were collectively referred to as 'pleiotropic actions of statins.' Pleiotropism of statins formed the basis for evaluating statins for several indications other than lipid lowering. Evidence both in favour and against is available for several of these indications. The current review attempts to critically summarise the available data for each of these indications

    Airborne and ground-based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin

    Get PDF
    Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 11% and 34 4%, respectively, and an average increase in VOC/NOx ratio of 48 8% and 43 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOx oxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 13% and 42 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 14% and 22 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB. Copyright 2012 by the American Geophysical Union
    corecore