24 research outputs found

    Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment

    Get PDF
    Background: Approximately 500 Tg of isoprene are emitted to the atmosphere annually, an amount similar to that of methane, and despite its significant effects on the climate, very little is known about the biological degradation of isoprene in the environment. Isolation and characterisation of isoprene degraders at the molecular level has allowed the development of probes targeting isoA encoding the α-subunit of the isoprene monooxygenase. This enzyme belongs to the soluble diiron centre monooxygenase family and catalyses the first step in the isoprene degradation pathway. The use of probes targeting key metabolic genes is a successful approach in molecular ecology to study specific groups of bacteria in complex environments. Here, we developed and tested a novel isoA PCR primer set to study the distribution, abundance, and diversity of isoprene degraders in a wide range of environments. Results: The new isoA probes specifically amplified isoA genes from taxonomically diverse isoprene-degrading bacteria including members of the genera Rhodococcus, Variovorax, and Sphingopyxis. There was no cross-reactivity with genes encoding related oxygenases from non-isoprene degraders. Sequencing of isoA amplicons from DNA extracted from environmental samples enriched with isoprene revealed that most environments tested harboured a considerable variety of isoA sequences, with poplar leaf enrichments containing more phylogenetically diverse isoA genes. Quantification by qPCR using these isoA probes revealed that isoprene degraders are widespread in the phyllosphere, terrestrial, freshwater and marine environments. Specifically, soils in the vicinity of high isoprene-emitting trees contained the highest number of isoprene-degrading bacteria. Conclusion: This study provides the molecular ecology tools to broaden our knowledge of the distribution, abundance and diversity of isoprene degraders in the environment, which is a fundamental step necessary to assess the impact that microbes have in mitigating the effects of this important climate-active gas

    Screening For Lipids From Marine Microalgae Using Nile Red

    No full text
    The fluorescent stain Nile Red has been used extensively for the quantification of lipids in phytoplankton, including microalgae, because it preferentially stains neutral lipids and it is economical and sensitive to use for screening purposes. Although its basic application has not changed for several decades, recent improvements have been made to improve its utility across applications. Here we describe additional refinements in its application and interpretation as a high-throughput method for the rapid quantification of neutral lipids in liquid cultures of marine phytoplankton. Specifically we address (1) interspecies comparisons, (2) fluorescence excitation and emission wavelengths, and (3) the time course of the Nile Red signal in the context of using bulk or cell-specific fluorescence to quantify neutral lipids of live or preserved cells. We show that with proper caution in its interpretation across species and physiological states the quantity of lipid in hundreds of small volume samples can be reliably assessed daily using a refined Nile Red protocol
    corecore