53 research outputs found

    The Phospholipid Scramblases 1 and 4 Are Cellular Receptors for the Secretory Leukocyte Protease Inhibitor and Interact with CD4 at the Plasma Membrane

    Get PDF
    Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention

    Cost-effectiveness of MRI compared to mammography for breast cancer screening in a high risk population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast magnetic resonance imaging (MRI) is a sensitive method of breast imaging virtually uninfluenced by breast density. Because of the improved sensitivity, breast MRI is increasingly being used for detection of breast cancer among high risk young women. However, the specificity of breast MRI is variable and costs are high. The purpose of this study was to determine if breast MRI is a cost-effective approach for the detection of breast cancer among young women at high risk.</p> <p>Methods</p> <p>A Markov model was created to compare annual breast cancer screening over 25 years with either breast MRI or mammography among young women at high risk. Data from published studies provided probabilities for the model including sensitivity and specificity of each screening strategy. Costs were based on Medicare reimbursement rates for hospital and physician services while medication costs were obtained from the Federal Supply Scale. Utilities from the literature were applied to each health outcome in the model including a disutility for the temporary health state following breast biopsy for a false positive test result. All costs and benefits were discounted at 5% per year. The analysis was performed from the payer perspective with results reported in 2006 U.S. dollars. Univariate and probabilistic sensitivity analyses addressed uncertainty in all model parameters.</p> <p>Results</p> <p>Breast MRI provided 14.1 discounted quality-adjusted life-years (QALYs) at a discounted cost of 18,167whilemammographyprovided14.0QALYsatacostof18,167 while mammography provided 14.0 QALYs at a cost of 4,760 over 25 years of screening. The incremental cost-effectiveness ratio of breast MRI compared to mammography was 179,599/QALY.Inunivariateanalysis,breastMRIscreeningbecame<179,599/QALY. In univariate analysis, breast MRI screening became < 50,000/QALY when the cost of the MRI was < 315.Intheprobabilisticsensitivityanalysis,MRIscreeningproducedanethealthbenefitof−0.202QALYs(95315. In the probabilistic sensitivity analysis, MRI screening produced a net health benefit of -0.202 QALYs (95% central range: -0.767 QALYs to +0.439 QALYs) compared to mammography at a willingness-to-pay threshold of 50,000/QALY. Breast MRI screening was superior in 0%, < 50,000/QALYin2250,000/QALY in 22%, > 50,000/QALY in 34%, and inferior in 44% of trials.</p> <p>Conclusion</p> <p>Although breast MRI may provide health benefits when compared to mammographic screening for some high risk women, it does not appear to be cost-effective even at willingness to pay thresholds above $120,000/QALY.</p

    Economic evaluation of chemoprevention of breast cancer with tamoxifen and raloxifene among high-risk women in Japan

    Get PDF
    Raloxifene was approved for chemoprevention against breast cancer among high-risk women in addition to tamoxifen by the US Food and Drug Administration. This study aims to evaluate cost-effectiveness of these agents under Japan's health system. A cost-effectiveness analysis with Markov model consisting of eight health states such as healthy, invasive breast cancer, and endometrial cancer is carried out. The model incorporated the findings of National Surgical Adjuvant Breast and Bowel Project P-1 and P-2 trial, and key costs obtained from health insurance claim reviews. Favourable results, that is cost saving or cost-effective, are found by both tamoxifen and raloxifene for the introduction of chemoprevention among extremely high-risk women such as having a history of atypical hyperplasia, a history of lobular carcinoma in situ or a 5-year predicted breast cancer risk of ⩾5.01% starting at younger age, whereas unfavourable results, that is ‘cost more and gain less' or cost-ineffective, are found for women with a 5-year predicted breast cancer risk of ⩽5.00%. Therapeutic policy switch from tamoxifen to raloxifene among postmenopausal women are implied cost-effective. Findings suggest that introduction of chemoprevention targeting extremely high-risk women in Japan can be justifiable as an efficient use of finite health-care resources, possibly contributing to cost containment

    Nanobiopolymer for Direct Targeting and Inhibition of EGFR Expression in Triple Negative Breast Cancer

    Get PDF
    Treatment options for triple negative breast cancer (TNBC) are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR) therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid) (PMLA) nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb) 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR) antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON) to inhibit EGFR synthesis. The nanobioconjugates variants were: (1) P (BioPolymer) with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR), and (2) P with AON and 2C5 (P/AON/2C5). Controls included (3) P with 2C5 but without AON (P/2C5), (4) PBS, and (5) P with PEG and leucine ester (LOEt) for endosomal escape (P/mPEG/LOEt). Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging) and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting

    Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14

    Get PDF
    TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara−/−;tspearb−/− double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants

    Time to definitive diagnosis of breast cancer in Latina and non-Hispanic white women: the six cities study

    Get PDF
    Time delay after an abnormal screening mammogram may have a critical impact on tumor size, stage at diagnosis, treatment, prognosis, and survival of subsequent breast cancer. This study was undertaken to evaluate disparities between Latina and non-Hispanic white (NHW) women in time to definitive diagnosis of breast cancer after an abnormal screening mammogram, as well as factors contributing to such disparities. As part of the activities of the National Cancer Institute (NCI)-funded Redes En Acción research network, clinical records of 186 Latinas and 74 NHWs who received abnormal screening mammogram results were reviewed to determine the time to obtain a definitive diagnosis. Data was obtained from participating clinics in six U.S. cities and included demographics, clinical history, and mammogram characteristics. Kaplan-Meier estimates and Cox proportional hazards models were used to test differences in median time to definitive diagnosis by ethnicity after adjusting for clinic site, demographics, and clinical characteristics. Time-to-event analysis showed that Latinas took 2.2 times longer to reach 50% definitively diagnosed with breast cancer relative to NHWs, and three times longer to reach 80% diagnosed (p=0.001). Latinas’ median time to definitive diagnosis was 60 days compared to 27 for NHWs, a 59% gap in diagnosis rates (adjusted Hazard Ratio [aHR] = 1.59, 95% CI = 1.09, 2.31; p=0.015). BI-RADS-4/5 women’s diagnosis rate was more than twice that of BI-RADS-3 (aHR = 2.11, 95% CI = 1.18, 3.78; p=0.011). Disparities in time between receipt of abnormal screening result and definitive diagnosis adversely affect Latinas compared to NHWs, and remain significant after adjusting for demographic and clinical variables. With cancer now the leading cause of mortality among Latinos, a greater need exists for ethnically and culturally appropriate interventions like patient navigation to facilitate Latinas’ successful entry into, and progression through, the cancer care system
    • …
    corecore