18 research outputs found

    A ground-based near-infrared emission spectrum of the exoplanet HD 189733b

    Full text link
    Detection of molecules using infrared spectroscopy probes the conditions and compositions of exoplanet atmospheres. Water (H2O), methane (CH4), carbon dioxide (CO2), and carbon monoxide (CO) have been detected in two hot Jupiters. These previous results relied on space-based telescopes that do not provide spectroscopic capability in the 2.4 - 5.2 micron spectral region. Here we report ground-based observations of the dayside emission spectrum for HD 189733b between 2.0-2.4 micron and 3.1-4.1 micron, where we find a bright emission feature. Where overlap with space-based instruments exists, our results are in excellent agreement with previous measurements. A feature at ~3.25 micron is unexpected and difficult to explain with models that assume local thermodynamic equilibrium (LTE) conditions at the 1 bar to 1 x 10-6 bar pressures typically sampled by infrared measurements. The most likely explanation for this feature is that it arises from non-LTE emission from CH4, similar to what is seen in the atmospheres of planets in our own Solar System. These results suggest that non-LTE effects may need to be considered when interpreting measurements of strongly irradiated exoplanets.Comment: 12 pages, 2 figures, published in Natur

    Regulating STING in health and disease.

    Get PDF
    The presence of cytosolic double-stranded DNA molecules can trigger multiple innate immune signalling pathways which converge on the activation of an ER-resident innate immune adaptor named "STimulator of INterferon Genes (STING)". STING has been found to mediate type I interferon response downstream of cyclic dinucleotides and a number of DNA and RNA inducing signalling pathway. In addition to its physiological function, a rapidly increasing body of literature highlights the role for STING in human disease where variants of the STING proteins, as well as dysregulated STING signalling, have been implicated in a number of inflammatory diseases. This review will summarise the recent structural and functional findings of STING, and discuss how STING research has promoted the development of novel therapeutic approaches and experimental tools to improve treatment of tumour and autoimmune diseases

    Evidence for Sigma Factor Competition in the Regulation of Alginate Production by Pseudomonas aeruginosa

    Get PDF
    Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgU(A61V)). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgU(A61V), 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ(70)). Induction of AlgU(A61V) in trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgU(A61V) is functional in activating alginate production. Furthermore, the level of AlgU(A61V) was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgU(A61V) had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ(70) orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (P(ssrA)) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ(70) factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD

    Drug treatment of peptic ulcer disease

    No full text
    corecore