1,734 research outputs found
Residual meson-meson interaction from lattice gauge simulation in a simple QED model
The residual interaction for a meson-meson system is computed utilizing the
cumulant, or cluster, expansion of the momentum-space time correlation matrix.
The cumulant expansion serves to define asymptotic, or free, meson-meson
operators. The definition of an effective interaction is then based on a
comparison of the full (interacting) and the free (noninteracting) time
correlation matrices. The proposed method, which may straightforwardly be
transcribed to other hadron-hadron systems, here is applied to a simple 2+1
dimensional U(1) lattice gauge model tuned such that it is confining. Fermions
are treated in the staggered scheme. The effective interaction exhibits a
repulsive core and attraction at intermediate relative distances. These
findings are consistent with an earlier study of the same model utilizing
L\"{u}scher's method where scattering phase shifts are obtained directly.Comment: 28 pages, compressed postscript fil
Reversible Pressure-Induced Amorphization in Solid C70 : Raman and Photoluminescence Study
We have studied single crystals of by Raman scattering and
photoluminescence in the pressure range from 0 to 31.1 GPa. The Raman spectrum
at 31.1 GPa shows only a broad band similar to that of the amorphous carbon
without any trace of the Raman lines of . After releasing the pressure
from 31.1 GPa, the Raman and the photoluminescence spectra of the recovered
sample are that of the starting crystal. These results indicate that
the molecules are stable upto 31.1 GPa and the amorphous carbon high
pressure phase is reversible, in sharp contrast to the results on solid
. A qualitative explaination is suggested in terms of inter- versus
intra-molecular interactions.Comment: To appear in Phys. Rev. Lett., 12 pages, RevTeX (preprint format), 3
figures available upon reques
Creating a Framework for Treating Autoimmune Gastritis:The Case for Replacing Lost Acid
Autoimmune gastritis (AIG) is characterized by the destruction of gastric parietal cells, resulting in hypochlorhydria and eventual achlorhydria, as oxyntic glands in the corpus are destroyed and become atrophic. The permanent loss of gastric acid has many impacts—both theoretical and documented. The most concerning of these are hypergastrinemia and increased N-nitroso compounds, both of which increase the risk of gastric cancers. While known deficiencies of B12 and iron are often replaced in AIG, acid is not. Moreover, patients with AIG are often prescribed acid suppression for a stomach that is decidedly no longer acidic, worsening the sequelae of gastric atrophy. Betaine hydrochloride (BHCL) is a short-acting acidifying agent, available over the counter in capsule form. Mealtime acid supplementation has an historic basis and could ameliorate many AIG-related gastrointestinal symptoms. Theoretically, acidification could also reduce the potential for hypergastrinemia and the production of N-nitroso compounds, consequently reducing the risk of gastric cancers. Supplemental vitamin C may also help in preventing gastric N-nitroso formation, regardless of the gastric pH. This narrative review describes the functions of gastric acid in gastrointestinal and immune health, documents the effects of hypochlorhydria in AIG, and proposes potential options for safely re-establishing the acid milieu of the stomach for patients with AIG.</p
Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance
We propose to search for neutron halo isomers populated via -capture
in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the
or neutron shell model state reaches zero binding energy.
These halo nuclei can be produced for the first time with new -beams of
high intensity and small band width ( 0.1%) achievable via Compton
back-scattering off brilliant electron beams thus offering a promising
perspective to selectively populate these isomers with small separation
energies of 1 eV to a few keV. Similar to single-neutron halo states for very
light, extremely neutron-rich, radioactive nuclei
\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and
short-range nuclear force allows the neutron to tunnel far out into free space
much beyond the nuclear core radius. This results in prolonged half lives of
the isomers for the -decay back to the ground state in the 100
ps-s range. Similar to the treatment of photodisintegration of the
deuteron, the neutron release from the neutron halo isomer via a second,
low-energy, intense photon beam has a known much larger cross section with a
typical energy threshold behavior. In the second step, the neutrons can be
released as a low-energy, pulsed, polarized neutron beam of high intensity and
high brilliance, possibly being much superior to presently existing beams from
reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics
Theoretical overview on high-energy emission in microquasars
Microquasar (MQ) jets are sites of particle acceleration and synchrotron
emission. Such synchrotron radiation has been detected coming from jet regions
of different spatial scales, which for the instruments at work nowadays appear
as compact radio cores, slightly resolved radio jets, or (very) extended
structures. Because of the presence of relativistic particles and dense photon,
magnetic and matter fields, these outflows are also the best candidates to
generate the very high-energy (VHE) gamma-rays detected coming from two of
these objects, LS 5039 and LS I +61 303, and may be contributing significantly
to the X-rays emitted from the MQ core. In addition, beside electromagnetic
radiation, jets at different scales are producing some amount of leptonic and
hadronic cosmic rays (CR), and evidences of neutrino production in these
objects may be eventually found. In this work, we review on the different
physical processes that may be at work in or related to MQ jets. The jet
regions capable to produce significant amounts of emission at different
wavelengths have been reduced to the jet base, the jet at scales of the order
of the size of the system orbital semi-major axis, the jet middle scales (the
resolved radio jets), and the jet termination point. The surroundings of the
jet could be sites of multiwavelegnth emission as well, deserving also an
insight. We focus on those scenarios, either hadronic or leptonic, in which it
seems more plausible to generate both photons from radio to VHE and high-energy
neutrinos. We briefly comment as well on the relevance of MQ as possible
contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the
conference: The multimessenger approach to the high-energy gamma-ray
sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables
(one reference corrected
Moments of the Hadronic Invariant Mass Spectrum in B --> X_c l nu Decays at Belle
We present a measurement of the hadronic invariant mass squared (M^2_X)
spectrum in charmed semileptonic B meson decays B --> X_c l nu based on 140
fb^-1 of Belle data collected near the Y(4S) resonance. We determine the first,
the second central and the second non-central moments of this spectrum for
lepton energy thresholds ranging between 0.7 and 1.9 GeV. Full correlations
between these measurements are evaluated.Comment: published version of the paper (one figure added, minor changes in
the text); 16 pages, 3 figures, 10 table
Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis
Masses, widths and photocouplings of baryon resonances are determined in a
coupled-channel partial wave analysis of a large variety of data. The
Bonn-Gatchina partial wave formalism is extended to include a decomposition of
t- and u-exchange amplitudes into individual partial waves. The multipole
transition amplitudes for and are
given and compared to results from other analyses.Comment: 18 pages, 14 figure
External training loads and smartphone-derived heart rate variability indicate readiness to train in elite soccer
Player readiness can affect the ability to perform and tolerate prescribed training load (TL); therefore, in a time-efficient and practice compatible manner, practitioners need objective evidence to inform readiness to train. Six male professional footballers (mean ± standard deviation [SD]; 26 ± 2 years, 79.0 ± 4.9 kg, 1.82 ± 0.05 m) participated. Heart rate variability (HRV) was recorded using a smartphone application prior to the daily training sessions (247 training sessions [41.17 ± 7.41 per player]). External TL was monitored during training using global positioning system devices. Linear mixed models were used to examine variations in HRV and TL across the study period and to determine relationships between HRV and TL. Differences in TL and HRV were expressed as standardised effect sizes (ES) ± 90% confidence limits. Changes in HRV (outcome) were expressed as the expected change for a 2-SD change in TL (predictor). Across the study period, all external TL measures varied substantially, demonstrating weekly fluctuations in load (ES range = 0.00–7.40). The relationship between morning HRV and external TL ranged from −0.10 for distance and 1.89 for equivalent distance index (EDI). Overall, EDI demonstrated the strongest relationship with morning HRV; therefore, EDI and smartphone-derived HRV may provide an indicator of readiness to train within elite soccer
Profitable Farm Adjustments in Southwestern Minnesota.
This archival publication may not reflect current scientific knowledge or recommendations. Current information available from University of Minnesota Agricultural Experiment Station: http://www.maes.umn.edu
- …
