3,772 research outputs found
Tunneling effects on impurity spectral function in coupled asymmetric quantum wires
The impurity spectral function is studied in coupled double quantum wires at
finite temperatures. Simple anisotropy in the confinement direction of the
wires leads to finite non-diagonal elements of the impurity spectral function
matrix. These non-diagonal elements are responsible for tunneling effects and
result in pronounced extra peak in the impurity spectral function up to
temperatures as high as 20 K.Comment: Accepted in Phys. Rev.
Enraizamento de cipó-de-são-joão (Pyrostegia venusta Miers.) pela aplicação de IBA e NAA.
Organizado por Patricia Póvoa de Mattos, Celso Garcia Auer, Rejane Stumpf Sberze, Katia Regina Pichelli e Paulo César Botosso
Out-of-phase oscillation between superfluid and thermal components for a trapped Bose condensate under oscillatory excitation
The vortex nucleation and the emergence of quantum turbulence induced by
oscillating magnetic fields, introduced by Henn E A L, et al. 2009 (Phys. Rev.
A 79, 043619) and Henn E A L, et al. 2009 (Phys. Rev. Lett. 103, 045301), left
a few open questions concerning the basic mechanisms causing those interesting
phenomena. Here, we report the experimental observation of the slosh dynamics
of a magnetically trapped Rb Bose-Einstein condensate (BEC) under the
influence of a time-varying magnetic field. We observed a clear relative
displacement in between the condensed and the thermal fraction center-of-mass.
We have identified this relative counter move as an out-of-phase oscillation
mode, which is able to produce ripples on the condensed/thermal fractions
interface. The out-of-phase mode can be included as a possible mechanism
involved in the vortex nucleation and further evolution when excited by time
dependent magnetic fields.Comment: 5 pages, 5 figures, 25 reference
Criticality in strongly correlated fluids
In this brief review I will discuss criticality in strongly correlated
fluids. Unlike simple fluids, molecules of which interact through short ranged
isotropic potential, particles of strongly correlated fluids usually interact
through long ranged forces of Coulomb or dipolar form. While for simple fluids
mechanism of phase separation into liquid and gas was elucidated by van der
Waals more than a century ago, the universality class of strongly correlated
fluids, or in some cases even existence of liquid-gas phase separation remains
uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic
Three-vortex configurations in trapped Bose-Einstein condensates
We report on the creation of three-vortex clusters in a
Bose-Einstein condensate by oscillatory excitation of the condensate. This
procedure can create vortices of both circulation, so that we are able to
create several types of vortex clusters using the same mechanism. The
three-vortex configurations are dominated by two types, namely, an
equilateral-triangle arrangement and a linear arrangement. We interpret these
most stable configurations respectively as three vortices with the same
circulation, and as a vortex-antivortex-vortex cluster. The linear
configurations are very likely the first experimental signatures of predicted
stationary vortex clusters.Comment: 4 pages, 4 figure
Carrier relaxation due to electron-electron interaction in coupled double quantum well structures
We calculate the electron-electron interaction induced energy-dependent
inelastic carrier relaxation rate in doped semiconductor coupled double quantum
well nanostructures within the two subband approximation at zero temperature.
In particular, we calculate, using many-body theory, the imaginary part of the
full self-energy matrix by expanding in the dynamically RPA screened Coulomb
interaction, obtaining the intrasubband and intersubband electron relaxation
rates in the ground and excited subbands as a function of electron energy. We
separate out the single particle and the collective excitation contributions,
and comment on the effects of structural asymmetry in the quantum well on the
relaxation rate. Effects of dynamical screening and Fermi statistics are
automatically included in our many body formalism rather than being
incorporated in an ad-hoc manner as one must do in the Boltzman theory.Comment: 26 pages, 5 figure
Monte Carlo study of the magnetic critical properties of the two-dimensional Ising fluid
A two-dimensional fluid of hard spheres each having a spin and
interacting via short-range Ising-like interaction is studied near the second
order phase transition from the paramagnetic gas to the ferromagnetic gas
phase. Monte Carlo simulation technique and the multiple histogram data
analysis were used. By measuring the finite-size behaviour of several different
thermodynamic quantities,we were able to locate the transition and estimate
values of various static critical exponents. The values of exponents
and are close to the ones for the two-dimensional
lattice Ising model. However, our result for the exponent is very
different from the one for the Ising universality class.Comment: 6 pages, 8 figures. To appear in Phys. Rev.
Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study
We use lattice Boltzmann simulations, in conjunction with Ewald summation
methods, to investigate the role of hydrodynamic interactions in colloidal
suspensions of dipolar particles, such as ferrofluids. Our work addresses
volume fractions of up to 0.20 and dimensionless dipolar interaction
parameters of up to 8. We compare quantitatively with Brownian
dynamics simulations, in which many-body hydrodynamic interactions are absent.
Monte Carlo data are also used to check the accuracy of static properties
measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic
interactions slow down both the long-time and the short-time decays of the
intermediate scattering function , for wavevectors close to the peak of
the static structure factor , by a factor of roughly two. The long-time
slowing is diminished at high interaction strengths whereas the short-time
slowing (quantified via the hydrodynamic factor ) is less affected by the
dipolar interactions, despite their strong effect on the pair distribution
function arising from cluster formation. Cluster formation is also studied in
transient data following a quench from ; hydrodynamic interactions
slow the formation rate, again by a factor of roughly two
- …