6,966 research outputs found

    Effects of an extra Z′Z' gauge boson on the top quark decay t−−>cγt --> c \gamma

    Full text link
    The effects of an extra Z′Z' gauge boson with family nonuniversal fermion couplings on the rare top quark decay t−−>ct --> c gammaarefirstexaminedinamodelindependentwayandthenintheminimal331model.Itisfoundthattherespectivebranchingfractionisatmostoftheorderof are first examined in a model independent way and then in the minimal 331 model. It is found that the respective branching fraction is at most of the order of 10^{-8}for for m_{Z'}=500GeVanddramaticallydecreasesforaheavier GeV and dramatically decreases for a heavier Z'boson.Thisresultsisinsharpcontrastwithapreviousevaluationofthisdecayinthecontextoftopcolorassistedtechnicolormodels,whichfoundthat boson. This results is in sharp contrast with a previous evaluation of this decay in the context of topcolor assisted technicolor models, which found that B(t --> c \gamma)\sim 10^{-6}for for m_{Z'}=1$ TeV.Comment: New paragraphs included to clarify our results, conclusion remains unchange

    Topological defects in lattice models and affine Temperley-Lieb algebra

    Full text link
    This paper is the first in a series where we attempt to define defects in critical lattice models that give rise to conformal field theory topological defects in the continuum limit. We focus mostly on models based on the Temperley-Lieb algebra, with future applications to restricted solid-on-solid (also called anyonic chains) models, as well as non-unitary models like percolation or self-avoiding walks. Our approach is essentially algebraic and focusses on the defects from two points of view: the "crossed channel" where the defect is seen as an operator acting on the Hilbert space of the models, and the "direct channel" where it corresponds to a modification of the basic Hamiltonian with some sort of impurity. Algebraic characterizations and constructions are proposed in both points of view. In the crossed channel, this leads us to new results about the center of the affine Temperley-Lieb algebra; in particular we find there a special subalgebra with non-negative integer structure constants that are interpreted as fusion rules of defects. In the direct channel, meanwhile, this leads to the introduction of fusion products and fusion quotients, with interesting mathematical properties that allow to describe representations content of the lattice model with a defect, and to describe its spectrum.Comment: 41

    Tunneling effects on impurity spectral function in coupled asymmetric quantum wires

    Full text link
    The impurity spectral function is studied in coupled double quantum wires at finite temperatures. Simple anisotropy in the confinement direction of the wires leads to finite non-diagonal elements of the impurity spectral function matrix. These non-diagonal elements are responsible for tunneling effects and result in pronounced extra peak in the impurity spectral function up to temperatures as high as 20 K.Comment: Accepted in Phys. Rev.

    Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds

    Get PDF
    Abstract Background DNA barcoding of life using a standardized COI sequence was proposed as a species identification system, and as a method for detecting putative new species. Previous tests in birds showed that individuals can be correctly assigned to species in ~94% of the cases and suggested a threshold of 10× mean intraspecific difference to detect potential new species. However, these tests were criticized because they were based on a single maternally inherited gene rather than multiple nuclear genes, did not compare phylogenetically identified sister species, and thus likely overestimated the efficacy of DNA barcodes in identifying species. Results To test the efficacy of DNA barcodes we compared ~650 bp of COI in 60 sister-species pairs identified in multigene phylogenies from 10 orders of birds. In all pairs, individuals of each species were monophyletic in a neighbor-joining (NJ) tree, and each species possessed fixed mutational differences distinguishing them from their sister species. Consequently, individuals were correctly assigned to species using a statistical coalescent framework. A coalescent test of taxonomic distinctiveness based on chance occurrence of reciprocal monophyly in two lineages was verified in known sister species, and used to identify recently separated lineages that represent putative species. This approach avoids the use of a universal distance cutoff which is invalidated by variation in times to common ancestry of sister species and in rates of evolution. Conclusion Closely related sister species of birds can be identified reliably by barcodes of fixed diagnostic substitutions in COI sequences, verifying coalescent-based statistical tests of reciprocal monophyly for taxonomic distinctiveness. Contrary to recent criticisms, a single DNA barcode is a rapid way to discover monophyletic lineages within a metapopulation that might represent undiscovered cryptic species, as envisaged in the unified species concept. This identifies a smaller set of lineages that can also be tested independently for species status with multiple nuclear gene approaches and other phenotypic characters

    Shape acquisition of rotating objects based on Laser Line Scanning

    Get PDF
    The present work proposes a methodology for 3D shape acquisition of objects through rotation-based Laser Line Scanning. This enables the acquisition of an object's 3D shape from multiple views, which leads to a more complete and accurate model

    Carrier relaxation due to electron-electron interaction in coupled double quantum well structures

    Full text link
    We calculate the electron-electron interaction induced energy-dependent inelastic carrier relaxation rate in doped semiconductor coupled double quantum well nanostructures within the two subband approximation at zero temperature. In particular, we calculate, using many-body theory, the imaginary part of the full self-energy matrix by expanding in the dynamically RPA screened Coulomb interaction, obtaining the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of electron energy. We separate out the single particle and the collective excitation contributions, and comment on the effects of structural asymmetry in the quantum well on the relaxation rate. Effects of dynamical screening and Fermi statistics are automatically included in our many body formalism rather than being incorporated in an ad-hoc manner as one must do in the Boltzman theory.Comment: 26 pages, 5 figure
    • …
    corecore