3 research outputs found

    A“Dirty” Footprint: Macroinvertebrate diversity in Amazonian Anthropic Soils

    Get PDF
    International audienceAmazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems. We found 673 morphospecies and, despite similar richness in ADEs (385 spp.) and reference soils (399 spp.), we identified a tenacious pre-Columbian footprint, with 49% of morphospecies found exclusively in ADEs. Termite and total macroinvertebrate abundance were higher in reference soils, while soil fertility and macroinvertebrate activity were higher in the ADEs, and associated with larger earthworm quantities and biomass. We show that ADE habitats have a unique pool of species, but that modern land use of ADEs decreases their populations, diversity, and contributions to soil functioning. These findings support the idea that humans created and sustained high-fertility ecosystems that persist today, altering biodiversity patterns in Amazonia

    A "dirty" footprint: macroinvertebrate diversity in Amazonian Anthropic Soils.

    Get PDF
    Amazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems

    Inoculação micorrízica e aclimatização de dois porta-enxertos de macieira micropropagados Mycorrhizal inoculation and acclimatization of two micropropagated apple rootstocks

    Get PDF
    A micropropagação e a inoculação de fungos micorrízicos arbusculares (FMA) podem melhorar a qualidade de mudas produzidas comercialmente. Essas técnicas permitem a produção de plantas homogêneas e de alta qualidade em curtos períodos de tempo, mas isso exige o conhecimento da interação entre fungos e plantas, substratos e técnicas de aclimatização e inoculação. Foi realizado um estudo em condições controladas a fim de desenvolver procedimentos para aclimatizar e inocular FMA nos porta-enxertos de macieira (Malus spp.) Marubakaido, vigoroso e com forte sistema radicular, e M.9, nanizante e com sistema radicular pouco desenvolvido. Plantas oriundas de micropropagação foram imersas em ácido indolebutírico (5miM) e transferidas para substrato à base de solo, a fim de serem enraizadas ex vitro. Antes ou após o enraizamento, inoculou-se uma mistura de isolados de Scutellospora pellucida, Glomus etunicatum e Glomus sp. A fase de enraizamento durou 21 dias, e após 51 e 81 dias avaliaram-se colonização micorrízica, altura, peso da matéria fresca e seca da parte aérea e relação entre raiz e parte aérea das plantas. A colonização micorrízica variou entre 50% e 70% para ambos porta-enxertos, tendo efeito positivo sobre o crescimento do porta-enxerto Marubakaido, enquanto o porta-enxerto M.9 teve seu desenvolvimento inibido pela presença dos FMA.<br>The combination of micropropagation and inoculation with arbuscular mycorrhizal fungi (AMF) can improve the quality of seedling plants produced on a commercial scale. These techniques allow high quality and homogeneous seedling production in a shorter period of time, but they require understanding of the interaction among fungi, plants, substrates, acclimatization and inoculation techniques. A study was performed under controlled conditions to develop procedures to acclimatize and inoculate AMF in two apple (Malus spp.) rootstocks: vigorous strong-rooted Marubakaido and the dwarfing, poorly rooted M.9. Micropropagated plants were treated with indole-butyric acid (5µM), and then transferred to a soil-based substrate for ex vitro rooting. The AMF were introduced before and after the rooting phase. A mixture of Scutellospora pellucida, two isolates of Glomus etunicatum, and Glomus sp. was utilized. The rooting phase lasted 21 days and plant growth was evaluated after 51 and 81 days under acclimatization conditions, for increase in height, shoot fresh and dry matter, root fresh matter, root-shoot ratio, and mycorrhizal colonization. Mycorrhizal root colonization ranged from 50% to 70% in both rootstocks. The mycorrhizal inoculation had a positive effect on root and shoot growth of Marubakaido rootstock plants, but had a negative effect on growth in M.9 plants
    corecore