121 research outputs found

    Uncertainties of the CJK 5 Flavour LO Parton Distributions in the Real Photon

    Full text link
    Radiatively generated, LO quark (u,d,s,c,b) and gluon densities in the real, unpolarized photon, calculated in the CJK model being an improved realization of the CJKL approach, have been recently presented. The results were obtained through a global fit to the experimental F2^gamma data. In this paper we present, obtained for the very first time in the photon case, an estimate of the uncertainties of the CJK parton distributions due to the experimental errors. The analysis is based on the Hessian method which was recently applied in the proton parton structure analysis. Sets of test parametrizations are given for the CJK model. They allow for calculation of its best fit parton distributions along with F2^gamma and for computation of uncertainties of any physical value depending on the real photon parton densities. We test the applicability of the approach by comparing uncertainties of example cross-sections calculated in the Hessian and Lagrange methods. Moreover, we present a detailed analysis of the chi^2 of the CJK fit and its relation to the data. We show that large chi^2/DOF of the fit is due to only a few of the experimental measurements. By excluding them chi^2/DOF approx 1 can be obtained.Comment: 28 pages, 8 eps figures, 2 Latex figures; FORTRAN programs available at http://www.fuw.edu.pl/~pjank/param.html; table 10, figure 10 and section 6 correcte

    Heavy Flavour Production in Two-Photon Collisions

    Get PDF
    We review the production of charm and bottom quarks in two-photon collisions at e+e- colliders. The next-to-leading order QCD predictions for total cross sections and differential distributions are compared with recent experimental results.Comment: 6 pages, 2 figures. Talk given at the UK Phenomenology Workshop on Collider Physics, Durham, England, 19-24 Sep 199

    Prospects for Pentaquark Searches in e+ee^+e^- Annihilations and γγ\gamma\gamma Collisions

    Full text link
    Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, Θ+\Theta^+, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of Θ+\Theta^+ and the observation of additional hypothetical exotic baryons in e+ee^+e^- annihilations and γγ\gamma\gamma collisions at LEP and B Factories

    Two particle correlations inside one jet at "Modified Leading Logarithmic Approximation" of Quantum Chromodynamics; I: exact solution of the evolution equations at small x

    Get PDF
    We discuss correlations between two particles in jets at high energy colliders and exactly solve the MLLA evolution equations in the small x limit. We thus extend the Fong-Webber analysis to the region away from the hump of the single inclusive energy spectrum. We give our results for LEP, Tevatron and LHC energies, and compare with existing experimental data.Comment: LaTeX, 49 pages, 57 .eps figures + one log

    Multiple Interactions and the Structure of Beam Remnants

    Full text link
    Recent experimental data have established some of the basic features of multiple interactions in hadron-hadron collisions. The emphasis is therefore now shifting, to one of exploring more detailed aspects. Starting from a brief review of the current situation, a next-generation model is developed, wherein a detailed account is given of correlated flavour, colour, longitudinal and transverse momentum distributions, encompassing both the partons initiating perturbative interactions and the partons left in the beam remnants. Some of the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure

    Experimental momentum spectra of identified hadrons at e+ee^+e^- colliders compared to QCD calculations

    Full text link
    Experimental data on the shape of hadronic momentum spectra are compared to theoretical predictions in the context of calculations in the Modified Leading Log Approximation (MLLA), under the assumption of Local Parton Hadron Duality (LPHD). Considered are experimental measurements at e+ee^+e^--colliders of ξp\xi_p^*, the position of the maximum in the distribution of ξp=log(1/xp)\xi_p=\log(1/x_p), where xp=p/pbeamx_p=p/p_{beam}. The parameter ξp\xi_p^* is determined for various hadrons at various centre of mass energies. The dependence on the hadron type poses some interesting questions about the process of hadron-formation. The dependence of ξp\xi^*_p on the centre of mass energy is seen to be described adequately by perturbation theory. A quantitative check of LPHD + MLLA is possible by extracting a value of αs\alpha_s from an overall fit to the scaling behaviour of ξp\xi^*_p.Comment: 9 pages latex, 7 eps figures and total ps fil

    Event shapes in e+e- annihilation and deep inelastic scattering

    Full text link
    This article reviews the status of event-shape studies in e+e- annihilation and DIS. It includes discussions of perturbative calculations, of various approaches to modelling hadronisation and of comparisons to data.Comment: Invited topical review for J.Phys.G; 40 pages; revised version corrects some nomenclatur

    Sensitivity of LHC experiments to exotic highly ionising particles

    Full text link
    The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they behave as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through either passive or active detectors and, in the case of magnetically charged objects, the so-called induction method with which magnetic monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.Comment: 20 pages, 52 figure

    Resolved Photon Processes

    Get PDF
    We review the present level of knowledge of the hadronic structure of the photon, as revealed in interactions involving quarks and gluons ``in" the photon. The concept of photon structure functions is introduced in the description of deep--inelastic eγe \gamma scattering, and existing parametrizations of the parton densities in the photon are reviewed. We then turn to hard \gamp\ and \gaga\ collisions, where we treat the production of jets, heavy quarks, hard (direct) photons, \jpsi\ mesons, and lepton pairs. We also comment on issues that go beyond perturbation theory, including recent attempts at a comprehensive description of both hard and soft \gamp\ and \gaga\ interactions. We conclude with a list of open problems.Comment: LaTeX with equation.sty, 85 pages, 29 figures (not included). A complete PS file of the paper, including figures, can be obtained via anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-898.ps.

    Mapping out the QCD phase transition in multiparticle production

    Get PDF
    We analyze multiparticle production in a thermal framework for 7 central nucleus nucleus collisions, e+e^++ ee^- annihilation into hadrons on the Z resonance and 4 hadronic reactions (p+p and p+pˉ\bar{p} with partial centrality selec tion), with center of mass energies ranging from s\sqrt{s}= 2.6 GeV (per nucleon pair) to 1.8 TeV. Thermodynamic parameters at chemical freeze-out (temperature and baryon and strangeness fugacities) are obtained from appropriate fits, generally improving in quality for reactions subjected to centrality cuts. All systems with nonvanishing fugacities are extrapolated along trajectories of equal energy density, density and entropy density to zero fugacities. The so obtained temperatures extrapolated to zero fugacities as a function of initial energy density ϵin\epsilon_{in} universally show a strong rise followed by a saturating limit of TlimT_{lim} = 155 ±\pm 6 ±\pm 20 MeV. We interpret this behaviour as mapping out the boundary between quark gluon plasma and hadronic phases. The ratio of strange antiquarks to light ones as a function of the initial energy density ϵin\epsilon_{in} shows the same behaviour as the temperature, saturating at a value of 0.365 ±\pm 0.033 ±\pm 0.07. No distinctive feature of 'strangeness enhancement' is seen for heavy ion collisions relative to hadronic and leptonic reactions, when compared at the same initial energy density
    corecore