111 research outputs found
Critical adsorption on curved objects
A systematic fieldtheoretic description of critical adsorption on curved
objects such as spherical or rodlike colloidal particles immersed in a fluid
near criticality is presented. The temperature dependence of the corresponding
order parameter profiles and of the excess adsorption are calculated
explicitly. Critical adsorption on elongated rods is substantially more
pronounced than on spherical particles. It turns out that, within the context
of critical phenomena in confined geometries, critical adsorption on a
microscopically thin `needle' represents a distinct universality class of its
own. Under favorable conditions the results are relevant for the flocculation
of colloidal particles.Comment: 52 pages, 10 figure
Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors
We determine the specific heat amplitude ratio near a -axial Lifshitz
point and show its universal character. Using a recent renormalization group
picture along with new field-theoretical -expansion techniques,
we established this amplitude ratio at one-loop order. We estimate the
numerical value of this amplitude ratio for and . The result is in
very good agreement with its experimental measurement on the magnetic material
. It is shown that in the limit it trivially reduces to the
Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review
Integrable field theory and critical phenomena. The Ising model in a magnetic field
The two-dimensional Ising model is the simplest model of statistical
mechanics exhibiting a second order phase transition. While in absence of
magnetic field it is known to be solvable on the lattice since Onsager's work
of the forties, exact results for the magnetic case have been missing until the
late eighties, when A.Zamolodchikov solved the model in a field at the critical
temperature, directly in the scaling limit, within the framework of integrable
quantum field theory. In this article we review this field theoretical approach
to the Ising universality class, with particular attention to the results
obtained starting from Zamolodchikov's scattering solution and to their
comparison with the numerical estimates on the lattice. The topics discussed
include scattering theory, form factors, correlation functions, universal
amplitude ratios and perturbations around integrable directions. Although we
restrict our discussion to the Ising model, the emphasis is on the general
methods of integrable quantum field theory which can be used in the study of
all universality classes of critical behaviour in two dimensions.Comment: 42 pages; invited review article for J. Phys.
Density Fluctuations in an Electrolyte from Generalized Debye-Hueckel Theory
Near-critical thermodynamics in the hard-sphere (1,1) electrolyte is well
described, at a classical level, by Debye-Hueckel (DH) theory with (+,-) ion
pairing and dipolar-pair-ionic-fluid coupling. But DH-based theories do not
address density fluctuations. Here density correlations are obtained by
functional differentiation of DH theory generalized to {\it non}-uniform
densities of various species. The correlation length diverges universally
at low density as (correcting GMSA theory). When
one has as
where the amplitudes compare informatively with experimental data.Comment: 5 pages, REVTeX, 1 ps figure included with epsf. Minor changes,
references added. Accepted for publication in Phys. Rev. Let
Equilibrium random-field Ising critical scattering in the antiferromagnet Fe(0.93)Zn(0.07)F2
It has long been believed that equilibrium random-field Ising model (RFIM)
critical scattering studies are not feasible in dilute antiferromagnets close
to and below Tc(H) because of severe non-equilibrium effects. The high magnetic
concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide
equilibrium behavior. We have employed scaling techniques to extract the
universal equilibrium scattering line shape, critical exponents nu = 0.87 +-
0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.Comment: 4 pages, 1 figure, minor revision
Critical behavior of the three-dimensional XY universality class
We improve the theoretical estimates of the critical exponents for the
three-dimensional XY universality class. We find alpha=-0.0146(8),
gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and
delta=4.780(2). We observe a discrepancy with the most recent experimental
estimate of alpha; this discrepancy calls for further theoretical and
experimental investigations. Our results are obtained by combining Monte Carlo
simulations based on finite-size scaling methods, and high-temperature
expansions. Two improved models (with suppressed leading scaling corrections)
are selected by Monte Carlo computation. The critical exponents are computed
from high-temperature expansions specialized to these improved models. By the
same technique we determine the coefficients of the small-magnetization
expansion of the equation of state. This expansion is extended analytically by
means of approximate parametric representations, obtaining the equation of
state in the whole critical region. We also determine the specific-heat
amplitude ratio.Comment: 61 pages, 3 figures, RevTe
Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems
High-temperature series are computed for a generalized Ising model with
arbitrary potential. Two specific ``improved'' potentials (suppressing leading
scaling corrections) are selected by Monte Carlo computation. Critical
exponents are extracted from high-temperature series specialized to improved
potentials, achieving high accuracy; our best estimates are:
, , , ,
. By the same technique, the coefficients of the small-field
expansion for the effective potential (Helmholtz free energy) are computed.
These results are applied to the construction of parametric representations of
the critical equation of state. A systematic approximation scheme, based on a
global stationarity condition, is introduced (the lowest-order approximation
reproduces the linear parametric model). This scheme is used for an accurate
determination of universal ratios of amplitudes. A comparison with other
theoretical and experimental determinations of universal quantities is
presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch
enabled us to improve the determination of the critical exponents and of the
equation of state. The discussion of several topics was improved and the
bibliography was update
Thermodynamic characteristics of the classical n-vector magnetic model in three dimensions
The method of calculating the free energy and thermodynamic characteristics
of the classical n-vector three-dimensional (3D) magnetic model at the
microscopic level without any adjustable parameters is proposed. Mathematical
description is perfomed using the collective variables (CV) method in the
framework of the model approximation. The exponentially decreasing
function of the distance between the particles situated at the N sites of a
simple cubic lattice is used as the interaction potential. Explicit and
rigorous analytical expressions for entropy,internal energy, specific heat near
the phase transition point as functions of the temperature are obtained. The
dependence of the amplitudes of the thermodynamic characteristics of the system
for and on the microscopic parameters of the interaction
potential are studied for the cases and . The obtained
results provide the basis for accurate analysis of the critical behaviour in
three dimensions including the nonuniversal characteristics of the system.Comment: 25 pages, 5 figure
Normative productivity of the global vegetation
<p>Abstract</p> <p>Background</p> <p>The biosphere models of terrestrial productivity are essential for projecting climate change and assessing mitigation and adaptation options. Many of them have been developed in connection to the International Geosphere-Biosphere Program (IGBP) that backs the work of the Intergovernmental Panel on Climate Change (IPCC). In the end of 1990s, IGBP sponsored release of a data set summarizing the model outputs and setting certain norms for estimates of terrestrial productivity. Since a number of new models and new versions of old models were developed during the past decade, these normative data require updating.</p> <p>Results</p> <p>Here, we provide the series of updates that reflects evolution of biosphere models and demonstrates evolutional stability of the global and regional estimates of terrestrial productivity. Most of them fit well the long-living Miami model. At the same time we call attention to the emerging alternative: the global potential for net primary production of biomass may be as high as 70 PgC y<sup>-1</sup>, the productivity of larch forest zone may be comparable to the productivity of taiga zone, and the productivity of rain-green forest zone may be comparable to the productivity of tropical rainforest zone.</p> <p>Conclusion</p> <p>The departure from Miami model's worldview mentioned above cannot be simply ignored. It requires thorough examination using modern observational tools and techniques for model-data fusion. Stability of normative knowledge is not its ultimate goal – the norms for estimates of terrestrial productivity must be evidence-based.</p
- …