252 research outputs found

    Design Space Exploration of Neural Network Activation Function Circuits

    Full text link
    The widespread application of artificial neural networks has prompted researchers to experiment with FPGA and customized ASIC designs to speed up their computation. These implementation efforts have generally focused on weight multiplication and signal summation operations, and less on activation functions used in these applications. Yet, efficient hardware implementations of nonlinear activation functions like Exponential Linear Units (ELU), Scaled Exponential Linear Units (SELU), and Hyperbolic Tangent (tanh), are central to designing effective neural network accelerators, since these functions require lots of resources. In this paper, we explore efficient hardware implementations of activation functions using purely combinational circuits, with a focus on two widely used nonlinear activation functions, i.e., SELU and tanh. Our experiments demonstrate that neural networks are generally insensitive to the precision of the activation function. The results also prove that the proposed combinational circuit-based approach is very efficient in terms of speed and area, with negligible accuracy loss on the MNIST, CIFAR-10 and IMAGENET benchmarks. Synopsys Design Compiler synthesis results show that circuit designs for tanh and SELU can save between 3.13-7.69 and 4.45-8:45 area compared to the LUT/memory-based implementations, and can operate at 5.14GHz and 4.52GHz using the 28nm SVT library, respectively. The implementation is available at: https://github.com/ThomasMrY/ActivationFunctionDemo.Comment: 5 pages, 5 figures, 16 conferenc

    Thermal Behaviour of Corn/Cotton Stalk Blends during Co-pyrolysis

    Get PDF
    AbstractThe pyrolysis behaviors and pyrolysis kinetics of corn straw (YM), cotton stalk(MG) and blends at different proportion were studied by TG-DSC technique. The results indicate that two kinds of biomass straw can be mixed fully. The pyrolysis process with its blend ratio is not a linear relationship and solid product reduced compared with single-stalk. In addition, the major pyrolysis process of mixture within the main range can be well described by a two-dimensional diffusion model with Malek method. Among the tested samples, the 40:60 MG/ YM blend shows the lowest activation energy of 51.7 KJ/mol. Besides corn straw plays a dominant role on the course of the thermal conversion. The experimental results may provide useful data to promote the application of biomass thermochemical conversion technology of biomass mixture

    A Sensitive Film Structure Improvement of Reduced Graphene Oxide Based Resistive Gas Sensors

    Get PDF
    This study was focused on how to improve the gas sensing properties of resistive gas sensors based on reduced graphene oxide. Sol-airbrush technology was utilized to prepare reduced graphene oxide films using porous zinc oxide films as supporting materials mainly for carbon dioxide sensing applications. The proposed film structure improved the sensitivity and the response/recovery speed of the sensors compared to those of the conventional ones and alleviated the restrictions of sensors\u27 performance to the film thickness. In addition, the fabrication technology is relatively simple and has potential for mass production in industry. The improvement in the sensitivity and the response/recovery speed is helpful for fast detection of toxic gases or vapors in environmental and industrial applications

    Reconstruct gene regulatory network using slice pattern model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression time series array data has become a useful resource for investigating gene functions and the interactions between genes. However, the gene expression arrays are always mixed with noise, and many nonlinear regulatory relationships have been omitted in many linear models. Because of those practical limitations, inference of gene regulatory model from expression data is still far from satisfactory.</p> <p>Results</p> <p>In this study, we present a model-based computational approach, Slice Pattern Model (SPM), to identify gene regulatory network from time series gene expression array data. In order to estimate performances of stability and reliability of our model, an artificial gene network is tested by the traditional linear model and SPM. SPM can handle the multiple transcriptional time lags and more accurately reconstruct the gene network. Using SPM, a 17 time-series gene expression data in yeast cell cycle is retrieved to reconstruct the regulatory network. Under the reliability threshold, <it>θ </it>= 55%, 18 relationships between genes are identified and transcriptional regulatory network is reconstructed. Results from previous studies demonstrate that most of gene relationships identified by SPM are correct.</p> <p>Conclusion</p> <p>With the help of pattern recognition and similarity analysis, the effect of noise has been limited in SPM method. At the same time, genetic algorithm is introduced to optimize parameters of gene network model, which is performed based on a statistic method in our experiments. The results of experiments demonstrate that the gene regulatory model reconstructed using SPM is more stable and reliable than those models coming from traditional linear model.</p

    Coexistence of Magnetic Orders in Two-Dimensional Magnet CrI3.

    Get PDF
    The magnetic properties in two-dimensional van der Waals materials depend sensitively on structure. CrI3, as an example, has been recently demonstrated to exhibit distinct magnetic properties depending on the layer thickness and stacking order. Bulk CrI3 is ferromagnetic (FM) with a Curie temperature of 61 K and a rhombohedral layer stacking, whereas few-layer CrI3 has a layered antiferromagnetic (AFM) phase with a lower ordering temperature of 45 K and a monoclinic stacking. In this work, we use cryogenic magnetic force microscopy to investigate CrI3 flakes in the intermediate thickness range (25-200 nm) and find that the two types of magnetic orders, hence the stacking orders, can coexist in the same flake with a layer of ∼13 nm at each surface being in the layered AFM phase similar to few-layer CrI3 and the rest in the bulk FM phase. The switching of the bulk moment proceeds through a remnant state with nearly compensated magnetic moment along the c-axis, indicating formation of c-axis domains allowed by a weak interlayer coupling strength in the rhombohedral phase. Our results provide a comprehensive picture on the magnetism in CrI3 and point to the possibility of engineering magnetic heterostructures within the same material

    Effects of Differently Processed Carrots on Ulcerative Colitis in Mice

    Get PDF
    The incidence of ulcerative colitis (UC) has been increasing in recent years. Due to the limitations of traditional drug therapies for UC, natural foods that can prevent this disease and alleviate its symptoms are becoming a research hot topic, but the effects of processing methods on their activity remain unknown. Therefore, the effects of three different processing methods (pulping, high-temperature cooking, and fermentation) on carotenoid and dietary fiber contents as well as carotenoid bioaccessibility in carrots were explored in this study. C57BL/6J mice were used to create a mouse model of UC induced by dextran sulfate sodium (DSS) and the mice received dietary intervention with freeze dried powder of carrots (5.05%, on a dry mass basis) for 14 days. Body mass change, disease activity index (DAI) and colon parameters (length, pathology, inflammatory factors, oxidative stress level, goblet cell number, tight junction protein expression, and short-chain fatty acid content) were analyzed to evaluate the effects of three differently processed carrots on UC. The results showed compared with pulping, high-temperature cooking and fermentation significantly decreased the soluble, insoluble and total dietary fiber contents of carrots (P < 0.05), increased the bioaccessibility of carotenoids (P < 0.05), while fermentation significantly increased the proportion of soluble dietary fiber in total dietary fiber (P < 0.05). Compared with the model group, all processed carrots could significantly inhibit the change of body mass loss and DAI (P < 0.05), decrease the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 (P < 0.05), increase the level of IL-10 (P < 0.05), and up-regulate the expression of tight junction proteins (ZO-1, claudin-1, and occludin) (P < 0.05). High-temperature cooked or fermented carrots could significantly alleviate colon shortening (P < 0.05), and relieve the pathological damage of colon tissue (P < 0.05). Meanwhile, fermented carrots could significantly inhibit the production of malondialdehyde (MDA) (P < 0.05), improve the decrease in the number of goblet cells (P < 0.05), increase the level of butyric acid (P < 0.05) and possess the best inhibitory effect on IL-6 production. In summary, differently processed carrots could ameliorate ulcerative colitis to different extends, the most pronounced effect being observed with fermented carrots

    Glycosylation on Spermatozoa, a Promise for the Journey to the Oocyte

    Get PDF
    Spermatozoa experience a long and tough transit in male and female genital tracts before successful fertilization. Glycosylation helps spermatogenesis, epididymal maturation, passing through cervical mucus, avoiding killing of the female immunologic system, and shaking hands between sperm and egg. Changes in glycosylations along the transit ensure that the right things happen at the right time and place on spermatozoa. Aberrant glycosylations on spermatozoa will negatively affect their fertility. Thus, we developed a lectin array method to examine the glycocalyx of spermatozoa, which will help observe glycosylations occurring on spermatozoa in a normal or abnormal conditions, such as spermatozoa with DEF126 mutation and poor freezability. Intriguingly, binding levels of ABA (Agaricus bisporus agglutinin), a lectin marking the inner layer of the glycocalyx, were changed in these subfertile spermatozoa, which indicates that the integrity of glycocalyx is critical for sperm fertility. In this chapter, we reviewed the impacts of glycosylations on sperm fertility, the lectin array method, and its potential application for sperm function assessment
    • …
    corecore