68,830 research outputs found

    Flow and non-flow correlations from four-particle multiplets in STAR

    Get PDF
    Elliptic flow results are presented for Au + Au collisions at sNN=130\sqrt{s_{NN}} = 130 GeV in RHIC. This signal is investigated as a function of transverse momentum, rapidity and centrality. Results from four-particle correlation analysis, which can filter out contributions to the flow signal from correlations unrelated to the event reaction plane (``non-flow''), are presented and compared to the conventional method, in which non-flow effects are treated as part of the systematic uncertainty.Comment: 5 pages, 4 figures, uses the class "aipproc

    Quenched degrees of freedom in symmetric diblock copolymer thin films

    Full text link
    We study the effect of monomer immobilization (quenching) on the orientation of the lamellae in symmetric diblock copolymer thin films with neutrally wetting surfaces. A small fraction of the monomers immediately next to the solid substrate is presumed to be quenched. In both the weak segregation limit and the strong segregation limit, quenching favors the lamellae orienting perpendicular to the film. Quenching inhibits the order-disorder transition twice as much for the parallel orientation as for the perpendicular.Comment: 11 page

    To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model

    Full text link
    The entrainment transition of coupled random frequency oscillators presents a long-standing problem in nonlinear physics. The onset of entrainment in populations of large but finite size exhibits strong sensitivity to fluctuations in the oscillator density at the synchronizing frequency. This is the source for the unusual values assumed by the correlation size exponent ν\nu'. Locally coupled oscillators on a dd-dimensional lattice exhibit two types of frequency entrainment: symmetry-breaking at d>4d > 4, and aggregation of compact synchronized domains in three and four dimensions. Various critical properties of the transition are well captured by finite-size scaling relations with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to Statphys2

    Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs.

    Get PDF
    ObjectiveThe nonobese diabetic (NOD) mouse is a well-established mouse model of spontaneous type 1 diabetes, which is characterized by an autoimmune destruction of the insulin-secreting pancreatic beta-cells. In this study, we address the role of tertiary lymphoid organs (TLOs) that form in the pancreas of NOD mice during disease progression.MethodsWe developed a model designed to "lock" lymphocytes in the pancreatic lymph node (PLN) and pancreas by the use of FTY720, which blocks the exit of lymphocytes from lymph nodes. A combination of flow cytometry, immunofluorescence, and analysis of clinical scores was used to study the effects of long-term FTY720 treatment on TLO development and development of diabetes.ResultsContinuous treatment of NOD mice with FTY720 prevented diabetes development even at a time of significant insulitis. Treatment withdrawal led to accelerated disease independent of the PLN. Interestingly, naive T-cells trafficked to and proliferated in the TLOs. In addition, morphological changes were observed that occurred during the development of the disease. Remarkably, although the infiltrates are not organized into T/B-cell compartments in 8-week-old mice, by 20 weeks of age, and in age-matched mice undergoing FTY720 treatment, the infiltrates showed a high degree of organization. However, in naturally and FTY720-induced diabetic mice, T/B-cell compartmentalization was lost.ConclusionOur data show that TLOs are established during diabetes development and suggest that islet destruction is due to a loss of TLO integrity, which may be prevented by FTY720 treatment

    Origin of the roughness exponent in elastic strings at the depinning threshold

    Full text link
    Within a recently developed framework of dynamical Monte Carlo algorithms, we compute the roughness exponent ζ\zeta of driven elastic strings at the depinning threshold in 1+1 dimensions for different functional forms of the (short-range) elastic energy. A purely harmonic elastic energy leads to an unphysical value for ζ\zeta. We include supplementary terms in the elastic energy of at least quartic order in the local extension. We then find a roughness exponent of ζ0.63\zeta \simeq 0.63, which coincides with the one obtained for different cellular automaton models of directed percolation depinning. The quartic term translates into a nonlinear piece which changes the roughness exponent in the corresponding continuum equation of motion. We discuss the implications of our analysis for higher-dimensional elastic manifolds in disordered media.Comment: 4 pages, 2 figure
    corecore