73,738 research outputs found

    T-duality Twists and Asymmetric Orbifolds

    Full text link
    We study some aspects of asymmetric orbifolds of tori, with the orbifold group being some ZN\mathbb{Z}_N subgroup of the T-duality group and, in particular, provide a concrete understanding of certain phase factors that may accompany the T-duality operation on the stringy Hilbert space in toroidal compactification. We discuss how these T-duality twist phase factors are related to the symmetry and locality properties of the closed string vertex operator algebra, and clarify the role that they enact in the modular covariance of the orbifold theory, mainly using asymmetric orbifolds of tori which are root lattices as working examples.Comment: 67 pages. v2: references added and typos correcte

    Dance and emotion in posterior parietal cortex: a low-frequency rTMS study

    Get PDF
    Background: The neural bases of emotion are most often studied using short non-natural stimuli and assessed using correlational methods. Here we use a brain perturbation approach to make causal inferences between brain activity and emotional reaction to a long segment of dance. <p>Objective/Hypothesis: We aimed to apply offline rTMS over the brain regions involved in subjective emotional ratings to explore whether this could change the appreciation of a dance performance.</p> <p>Methods: We first used functional magnetic resonance imaging (fMRI) to identify regions correlated with fluctuating emotional rating during a 4-minutes dance performance, looking at both positive and negative correlation. Identified regions were further characterized using meta-data interrogation. Low frequency repetitive TMS was applied over the most important node in a different group of participants prior to them rating the same dance performance as in the fMRI session.</p> <p>Results: FMRI revealed a negative correlation between subjective emotional judgment and activity in the right posterior parietal cortex. This region is commonly involved in cognitive tasks and not in emotional task. Parietal rTMS had no effect on the general affective response, but it significantly (p<0.05 using exact t-statistics) enhanced the rating of the moment eliciting the highest positive judgments.</p> <p>Conclusion: These results establish a direct link between posterior parietal cortex activity and emotional reaction to dance. They can be interpreted in the framework of competition between resources allocated to emotion and resources allocated to cognitive functions. They highlight potential use of brain stimulation in neuro-æsthetic investigations.</p&gt

    A new art code for tomographic interferometry

    Get PDF
    A new algebraic reconstruction technique (ART) code based on the iterative refinement method of least squares solution for tomographic reconstruction is presented. Accuracy and the convergence of the technique is evaluated through the application of numerically generated interferometric data. It was found that, in general, the accuracy of the results was superior to other reported techniques. The iterative method unconditionally converged to a solution for which the residual was minimum. The effects of increased data were studied. The inversion error was found to be a function of the input data error only. The convergence rate, on the other hand, was affected by all three parameters. Finally, the technique was applied to experimental data, and the results are reported

    MEG-measured auditory steady-state oscillations show high test-retest reliability: a sensor and source-space analysis

    Get PDF
    Stability of oscillatory signatures across magnetoencephalography (MEG) measurements is an important prerequisite for basic and clinical research that has been insufficiently addressed. Here, we evaluated the test–retest reliability of auditory steady-state responses (ASSRs) over two MEG sessions. The study required participants (N = 13) to detect the rare occurrence of pure tones interspersed within a stream of 5 Hz or 40 Hz amplitude-modulated (AM) tones. Intraclass correlations (ICC; Shrout and Fleiss, 1979) were derived to assess stability of spectral power changes and the inter-trial phase coherence (ITPC) of task-elicited neural responses. ASSRs source activity was estimated using eLORETA beamforming from bilateral auditory cortex. ASSRs to 40 Hz AM stimuli evoked stronger power modulation and phase-locking than 5 Hz stimulation. Overall, spectral power and ITPC values at both sensor- and source-level showed robust ICC values. Notably, ITPC measures yielded higher ICCs (~ 0.86–0.96) between sessions compared to the assessment of spectral power change (~ 0.61–0.82). Our data indicate that spectral modulations and phase consistency of ASSRs in MEG data are highly reproducible, providing support for MEG-measured oscillatory parameters in basic and clinical research

    MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable

    Get PDF
    High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating test–retest reliability of power and frequency measures of neural signals remain scarce. Here, we evaluated the test–retest reliability of visually induced gamma (30–100 Hz) oscillations derived from sensor and source signals acquired over two MEG sessions. The study required participants (N = 13) to detect the randomly occurring stimulus acceleration while viewing a moving concentric grating. Sensor and source MEG measures of gamma-band activity yielded comparably strong reliability (average intraclass correlation, ICC = 0.861). Peak stimulus-induced gamma frequency (53–72 Hz) yielded the highest measures of stability (ICCsensor = 0.940; ICCsource = 0.966) followed by spectral signal change (ICCsensor = 0.890; ICCsource = 0.893) and peak frequency bandwidth (ICCsensor = 0.856; ICCsource = 0.622). Furthermore, source-reconstruction significantly improved signal-to-noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are characterized by high test–retest reliability, with source derived oscillatory measures conferring an improvement in the stability of peak-frequency estimates. Importantly, our finding of high test–retest reliability supports the feasibility of pharma-MEG studies and longitudinal aging or clinical studies
    corecore