2,522 research outputs found
-Meson Decays and Strong Breaking in the Three-Flavor Nambu-Jona-Lasinio Model
We study the and
decays using an extended three-flavor Nambu-Jona-Lasinio model that includes
the 't~Hooft instanton induced interaction. We find that the -meson mass,
the decay width and the
decay width are in good agreement with the experimental values when the
breaking is strong and the flavor singlet-octet mixing angle
is about zero. The effects of the breaking on the baryon
number one and two systems are also studied.Comment: 12 pages, LaTeX, 2 eps figures, Talk given at the Joint
Japan-Australia Workshop on Quarks, Hadrons and Nuclei, Adelaide, Australia,
Nov. 15-24, 199
Advancement of the Wide-angle JEM-EUSO Optical System with Holographic and Fresnel Lenses
JEM-EUSO is a space mission to observe extremely high-energy cosmic rays, evolved from the previous design studies of EUSO. It is adjusted for the Japan Experiment Module (JEM) of the International Space Station (ISS). JEM-EUSO uses a wide-angle refractive telescope in near-ultraviolet wavelength region to observe from ISS the time-and-space-resolved atmospheric fluorescence images of the extensive air showers. The JEM-EUSO optics is re-designed after the ESA-Phase A studies to upgrade the light-collecting-power by using a new material CYTOP, and its overall light-collecting power is about 1.5 times higher than the ESA-Phase A baseline optics. We describe in this paper an optimized optics design that maximizes the sensitivity of JEM-EUSO, and the results of the optics manufacturing tests
Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy
We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by
core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type"
interfaces, Ti3+ signals appeared, which were absent for insulating "p-type"
interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well
below the critical thickness of 4 unit cells for metallic transport. Core-level
shifts with LaAlO3 thickness were much smaller than predicted by the polar
catastrophe model. We attribute these observations to surface
defects/adsorbates providing charges to the interface even below the critical
thickness
Chemical potential shift induced by double-exchange and polaronic effects in Nd_{1-x}Sr_xMnO_3
We have studied the chemical potential shift as a function of temperature in
NdSrMnO (NSMO) by measurements of core-level photoemission
spectra. For ferromagnetic samples ( and 0.45), we observed an unusually
large upward chemical potential shift with decreasing temperature in the
low-temperature region of the ferromagnetic metallic (FM) phase. This can be
explained by the double-exchange (DE) mechanism if the band is split by
dynamical/local Jahn-Teller effect. The shift was suppressed near the Curie
temperature (), which we attribute to the crossover from the DE to
lattice-polaron regimes.Comment: 5 pages, 6 figure
Magnetic helicity transported by flux emergence and shuffling motions in Solar Active Region NOAA 10930
We present a new methodology which can determine magnetic helicity transport
by the passage of helical magnetic field lines from sub-photosphere and the
shuffling motions of foot-points of preexisting coronal field lines separately.
It is well known that only the velocity component which is perpendicular to the
magnetic field () has contribution to the helicity
accumulation. Here, we demonstrate that can be deduced
from horizontal motion and vector magnetograms, under a simple relation of
as suggested by
Dmoulin & Berger (2003). Then after dividing
into two components, as one is tangential and the other is normal to the solar
surface, we can determine both terms of helicity transport. Active region (AR)
NOAA 10930 is analyzed as an example during its solar disk center passage by
using data obtained by the Spectro-Polarimeter and the Narrowband Filter Imager
of Solar Optical Telescope on board Hinode. We find that in our calculation,
the helicity injection by flux emergence and shuffling motions have the same
sign. During the period we studied, the main contribution of helicity
accumulation comes from the flux emergence effect, while the dynamic transient
evolution comes from the shuffling motions effect. Our observational results
further indicate that for this AR, the apparent rotational motion in the
following sunspot is the real shuffling motions on solar surface
Spectroscopy of SrRuO/Ru Junctions in Eutectic
We have investigated the tunnelling properties of the interface between
superconducting Sr2RuO4 and a single Ru inclusion in eutectic. By using a
micro-fabrication technique, we have made Sr2RuO4/Ru junctions on the eutectic
system that consists of Sr2RuO4 and Ru micro-inclusions. Such a eutectic system
exhibits surface superconductivity, called the 3-K phase. A zero bias
conductance peak (ZBCP) was observed in the 3-K phase. We propose to use the
onset of the ZBCP to delineate the phase boundary of a time-reversal symmetry
breaking state.Comment: To be published in Proc of 24th Int. Conf. on Low Temperature Physics
(LT24); 2 page
Chemical potential landscape in band filling and bandwidth-control of manganites: Photoemission spectroscopy measurements
We have studied the effects of band filling and bandwidth control on the
chemical potential in perovskite manganites MnO ( : rare
earth, : alkaline earth) by measurements of core-level photoemission
spectra. A suppression of the doping-dependent chemical potential shift was
observed in and around the CE-type charge-ordered composition range, indicating
that there is charge self-organization such as stripe formation or its
fluctuations. As a function of bandwidth, we observed a downward chemical
potential shift with increasing bandwidth due to the reduction of the
orthorhombic distortion. After subtracting the latter contribution, we found an
upward chemical potential shift in the ferromagnetic metallic region
, which we attribute to the enhancement of double-exchange
interaction involving the Jahn-Teller-split band.Comment: 5 pages, 4 figure
Photoemission study of TiO2/VO2 interfaces
We have measured photoemission spectra of two kinds of TiO-capped VO
thin films, namely, that with rutile-type TiO (r-TiO/VO) and that
with amorphous TiO (a-TiO/VO) capping layers. Below the
Metal-insulator transition temperature of the VO thin films, K,
metallic states were not observed for the interfaces with TiO, in contrast
with the interfaces between the band insulator SrTiO and the Mott insulator
LaTiO in spite of the fact that both TiO and SrTiO are band
insulators with electronic configurations and both VO and LaTiO
are Mott insulators with electronic configurations. We discuss possible
origins of this difference and suggest the importance of the polarity
discontinuity of the interfaces. Stronger incoherent part was observed in
r-TiO/VO than in a-TiO/VO, suggesting Ti-V atomic diffusion due
to the higher deposition temperature for r-TiO/VO.Comment: 5 pages, 6 figure
- …