673 research outputs found

    Effect of Pt doping on the critical temperature and upper critical field in YNi2-xPtxB2C (x=0-0.2)

    Full text link
    We investigate the evolution of superconducting properties by doping non-magnetic impurity in single crystals of YNi2-xPtxB2C (x=0-0.2). With increasing Pt doping the critical temperature (Tc) monotonically decreases from 15.85K and saturates to a value ~13K for x>0.14. However, unlike conventional s-wave superconductors, the upper critical field (HC2) along both crystallographic directions a and c decreases with increasing Pt doping. Specific heat measurements show that the density of states (N(EF)) at the Fermi level (EF) and the Debye temperatures (Theta_D) in this series remains constant within the error bars of our measurement. We explain our results based on the increase in intraband scattering in the multiband superconductor YNi2B2C.Comment: ps file with figure

    Thermal conductivity of Mg-doped CuGeO_3 at very low temperatures: Heat conduction by antiferromagnetic magnons

    Full text link
    Thermal conductivity \kappa is measured at very low temperatures down to 0.28 K for pure and Mg-doped CuGeO_3 single crystals. The doped samples carry larger amount of heat than the pure sample at the lowest temperature. This is because antiferromagnetic magnons appear in the doped samples and are responsible for the additional heat conductivity, while \kappa of the pure sample represents phonon conductivity at such low temperatures. The maximum energy of the magnon is estimated to be much lower than the spin-Peierls-gap energy. The result presents the first example that \kappa at very low temperatures probes the magnon transport in disorder-induced antiferromagnetic phase of spin-gap systems

    Microwave Surface-Impedance Measurements of the Magnetic Penetration Depth in Single Crystal Ba1-xKxFe2As2 Superconductors: Evidence for a Disorder-Dependent Superfluid Density

    Full text link
    We report high-sensitivity microwave measurements of the in-plane penetration depth λab\lambda_{ab} and quasiparticle scattering rate 1/τ1/\tau in several single crystals of hole-doped Fe-based superconductor Ba1x_{1-x}Kx_xFe2_2As2_2 (x0.55x\approx 0.55). While power-law temperature dependence of λab\lambda_{ab} with the power 2\sim 2 is found in crystals with large 1/τ1/\tau, we observe exponential temperature dependence of superfluid density consistent with the existence of fully opened two gaps in the cleanest crystal we studied. The difference may be a consequence of different level of disorder inherent in the crystals. We also find a linear relation between the low-temperature scattering rate and the density of quasiparticles, which shows a clear contrast to the case of d-wave cuprate superconductors with nodes in the gap. These results demonstrate intrinsically nodeless order parameters in the Fe-arsenides.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in Phys. Rev. Lett. Changed title as suggested by the PRL editor

    Evolution of superconductivity in LaO1-xFxBiS2 prepared by high pressure technique

    Full text link
    Novel BiS2-based superconductors LaO1-xFxBiS2 prepared by the high pressure synthesis technique were systematically studied. It was found that the high pressure annealing strongly the lattice as compared to the LaO1-xFxBiS2 samples prepared by conventional solid state reaction at ambient pressure. Bulk superconductivity was observed within a wide F-concentration range of x = 0.2 ~ 0.7. On the basis of those results, we have established a phase diagram of LaO1-xFxBiS2.Comment: 11 pages, 6 figure

    Development of Large Volume Neutron Detector

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Flux jumps, Second Magnetization Peak anomaly and the Peak Effect phenomenon in single crystals of YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C

    Full text link
    We present magnetization measurements in single crystals of the tetragonal YNi2B2CYNi_2B_2C compound, which exhibit the phenomenon of peak effect as well as the second magnetization peak anomaly for H >> 0.5T (H || c). At the lower field (50mT << H << 200mT), we have observed the presence of flux jumps, which seem to relate to a structural change in the local symmetry of the flux line lattice (a first order re-orientation transition across a local field in some parts of the sample, in the range of 100mT to 150mT). These flux jumps are also observed in a single crystal of LuNi2B2CLuNi_2B_2C for H || c in the field region from 2 mT to 25 mT, which are compatible with the occurrence of a re-orientation transition at a lower field in a cleaner crystal of this compound, as compared to those of YNi2B2CYNi_2B_2C. Vortex phase diagrams drawn for H || c in LuNi2B2CLuNi_2B_2C and YNi2B2CYNi_2B_2C show that the ordered elastic glass phase spans a larger part of (H, T) space in the former as compared to latter, thereby, reaffirming the difference in the relative purity of the two samples.Comment: 11 pages, 14 figure

    Fermiological Interpretation of Superconductivity/Non-superconductivity of FeTe_{1-x}Se_{x} Thin Crystal Determined by Quantum Oscillation Measurement

    Full text link
    We have successfully observed quantum oscillation (QO) for FeTe_{1-x}Se_{x}. QO measurements were performed using non-superconducting and superconducting thin crystals of FeTe_{0.65}Se_{0.35} fabricated by the scotch-tape method. We show that the Fermi surfaces (FS) of the non-superconducting crystal are in good agreement with the rigid band shift model based on electron doping by excess Fe while that of the superconducting crystal is in good agreement with the calculated FS with no shift. From the FS comparison of both crystals, we demonstrate the change of the cross-sectional area of the FS, suggesting that the suppression of the FS nesting with the vector Q_{s} = (\pi, \pi) due to excess Fe results in the disappearance of the superconductivity.Comment: 8 pages, 4 figure
    corecore