518 research outputs found
Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices
Discrete breathers are time-periodic, spatially localized solutions of
equations of motion for classical degrees of freedom interacting on a lattice.
They come in one-parameter families. We report on studies of energy properties
of breather families in one-, two- and three-dimensional lattices. We show that
breather energies have a positive lower bound if the lattice dimension of a
given nonlinear lattice is greater than or equal to a certain critical value.
These findings could be important for the experimental detection of discrete
breathers.Comment: 10 pages, LaTeX, 4 figures (ps), Physical Review Letters, in prin
Obtaining Breathers in Nonlinear Hamiltonian Lattices
We present a numerical method for obtaining high-accuracy numerical solutions
of spatially localized time-periodic excitations on a nonlinear Hamiltonian
lattice. We compare these results with analytical considerations of the spatial
decay. We show that nonlinear contributions have to be considered, and obtain
very good agreement between the latter and the numerical results. We discuss
further applications of the method and results.Comment: 21 pages (LaTeX), 8 figures in ps-files, tar-compressed uuencoded
file, Physical Review E, in pres
A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations
A new class of 1D discrete nonlinear Schrdinger Hamiltonians
with tunable nonlinerities is introduced, which includes the integrable
Ablowitz-Ladik system as a limit. A new subset of equations, which are derived
from these Hamiltonians using a generalized definition of Poisson brackets, and
collectively refered to as the N-AL equation, is studied. The symmetry
properties of the equation are discussed. These equations are shown to possess
propagating localized solutions, having the continuous translational symmetry
of the one-soliton solution of the Ablowitz-Ladik nonlinear
Schrdinger equation. The N-AL systems are shown to be suitable
to study the combined effect of the dynamical imbalance of nonlinearity and
dispersion and the Peierls-Nabarro potential, arising from the lattice
discreteness, on the propagating solitary wave like profiles. A perturbative
analysis shows that the N-AL systems can have discrete breather solutions, due
to the presence of saddle center bifurcations in phase portraits. The
unstaggered localized states are shown to have positive effective mass. On the
other hand, large width but small amplitude staggered localized states have
negative effective mass. The collison dynamics of two colliding solitary wave
profiles are studied numerically. Notwithstanding colliding solitary wave
profiles are seen to exhibit nontrivial nonsolitonic interactions, certain
universal features are observed in the collison dynamics. Future scopes of this
work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn
Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings
The spatiotemporal dynamics of a damped sine-Gordon chain with sinusoidal
nearest-neighbor couplings driven by a constant uniform force are discussed.
The velocity characteristics of the chain versus the external force is shown.
Dynamics in the high- and low-velocity regimes are investigated. It is found
that in the high-velocity regime, the dynamics is dominated by rotating modes,
the velocity shows a branching bifurcation feature, while in the low-velocity
regime, the velocity exhibits step-like dynamical transitions, broken by the
destruction of strong resonances.Comment: 10 Revtex pages, 8 Eps figures, to appear in Phys. Rev.E 57(1998
Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum
The original publication is available at www.springerlink.com.ArticleAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 75(5): 1173-1182 (2007)journal articl
- …