2,601 research outputs found

    NMR measurements on obliquely evaporated Co-Cr films

    Get PDF
    The distribution of the hyperfine fields or the resonance frequencies in metals and alloys obtained by NMR measurements have been known for a long time. Recently, new experimental data have been published about thin films for studying their chemical inhomogeneities. An example is the study on sputtered and evaporated Co-Cr layers. In this paper we report on the compositional distribution of co-evaporated Co-Cr films by using the Co spin-echo NMR technique. For comparison single source evaporated samples of Co-Cr and pure Co as well as two alloyed ribbons (¿bulk¿ samples) have also been measured. Based on the NMR results the local Cr concentration of the ferromagnetic and less ferromagnetic regions are determined. In comparison the data from the co-evaporated films, even at low substrate temperature, have clearly shown the presence of a process-induced compositional separation. This is in qualitative agreement with the magnetic properties of the samples

    X-Ray Study of the Outer Region of Abell 2142 with Suzaku

    Full text link
    We observed outer regions of a bright cluster of galaxies A2142 with Suzaku. Temperature and brightness structures were measured out to the virial radius (r200r_{200}) with good sensitivity. We confirmed the temperature drop from 9 keV around the cluster center to about 3.5 keV at r200r_{200}, with the density profile well approximated by the β\beta model with β=0.85\beta = 0.85. Within 0.4\r_{200}, the entropy profile agrees with r1.1r^{1.1}, as predicted by the accretion shock model. The entropy slope becomes flatter in the outer region and negative around r200r_{200}. These features suggest that the intracluster medium in the outer region is out of thermal equilibrium. Since the relaxation timescale of electron-ion Coulomb collision is expected to be longer than the elapsed time after shock heating at r200r_{200}, one plausible reason of the low entropy is the low electron temperature compared to that of ions. Other possible explanations would be gas clumpiness, turbulence and bulk motions of ICM\@. We also searched for a warm-hot intergalactic medium around r200r_{200} and set an upper limit on the oxygen line intensity. Assuming a line-of-sight depth of 2 Mpc and oxygen abundance of 0.1 solar, the upper limit of an overdensity is calculated to be 280 or 380, depending on the foreground assumption.Comment: 14 pages, 8 figure

    Magmatic focusing to mid-ocean ridges: the role of grain size variability and non-Newtonian viscosity

    Get PDF
    Melting beneath mid-ocean ridges occurs over a region that is much broader than the zone of magmatic emplacement to form the oceanic crust. Magma is focused into this zone by lateral transport. This focusing has typically been explained by dynamic pressure gradients associated with corner flow, or by a sub-lithospheric channel sloping upward toward the ridge axis. Here we discuss a novel mechanism for magmatic focusing: lateral transport driven by gradients in compaction pressure within the asthenosphere. These gradients arise from the co-variation of melting rate and compaction viscosity. The compaction viscosity, in previous models, was given as a function of melt fraction and temperature. In contrast, we show that the viscosity variations relevant to melt focusing arise from grain-size variability and non-Newtonian creep. The asthenospheric distribution of melt fraction predicted by our models provides an improved ex- planation of the electrical resistivity structure beneath one location on the East Pacific Rise. More generally, although grain size and non-Newtonian viscosity are properties of the solid phase, we find that in the context of mid-ocean ridges, their effect on melt transport is more profound than their effect on the mantle corner-flow.Comment: 20 pages, 4 figures, 1 tabl

    Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations

    Full text link
    For a higher order linear ordinary differential operator P, its Stokes curve bifurcates in general when it hits another turning point of P. This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in resolving a paradox recently found in the Noumi-Yamada system, a system of linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure

    Detection of highly ionized O and Ne absorption lines in the X-ray spectrum of 4U1820-303 in the globular cluster, NGC 6624

    Full text link
    We searched for absorption lines of highly ionized O and Ne in the energy spectra of two Low-mass X-ray binaries, 4U1820-303 in the globular cluster NGC6624 and Cyg X-2, observed with the Chandra LETG, and detected O VII, O VIII and Ne IX absorption lines for 4U1820-303. The equivalent width of the O VII K alpha line was 1.19 +0.47/-0.30 eV (90 % errors) and the significance was 6.5 sigma. Absorption lines were not detected for Cyg X-2 with a 90 % upper limit on the equivalent width of 1.06 eV for O VII K alpha. The absorption lines observed in 4U1820-303 are likely due to hot interstellar medium, because O will be fully photo-ionized if the absorbing column is located close to the binary system. The velocity dispersion is restricted to b = 200 - 420 km/s from consistency between O VII K alpha and K beta lines, Ne/O abundance ratio, and H column density. The average temperature and the O VII density are respectively estimated to be log(T[K]) = 6.2 - 6.3 and n(OVII) = (0.7 - 2.3) x 10^{-6} cm^{-3}. The difference of O VII column densities for the two sources may be connected to the enhancement of the soft X-ray background (SXB) towards the Galactic bulge region. Using the polytrope model of hot gas to account for the SXB we corrected for the density gradient and estimated the midplane O VII density at the solar neighborhood. The scale height of hot gas is then estimated using the AGN absorption lines. It is suggested that a significant portion of both the AGN absorption lines and the high-latitude SXB emission lines can be explained by the hot gas in our Galaxy.Comment: Accepted for publication in ApJ. 7 pages, 9 eps figure
    • …
    corecore