We searched for absorption lines of highly ionized O and Ne in the energy
spectra of two Low-mass X-ray binaries, 4U1820-303 in the globular cluster
NGC6624 and Cyg X-2, observed with the Chandra LETG, and detected O VII, O VIII
and Ne IX absorption lines for 4U1820-303. The equivalent width of the O VII K
alpha line was 1.19 +0.47/-0.30 eV (90 % errors) and the significance was 6.5
sigma. Absorption lines were not detected for Cyg X-2 with a 90 % upper limit
on the equivalent width of 1.06 eV for O VII K alpha. The absorption lines
observed in 4U1820-303 are likely due to hot interstellar medium, because O
will be fully photo-ionized if the absorbing column is located close to the
binary system. The velocity dispersion is restricted to b = 200 - 420 km/s from
consistency between O VII K alpha and K beta lines, Ne/O abundance ratio, and H
column density. The average temperature and the O VII density are respectively
estimated to be log(T[K]) = 6.2 - 6.3 and n(OVII) = (0.7 - 2.3) x 10^{-6}
cm^{-3}. The difference of O VII column densities for the two sources may be
connected to the enhancement of the soft X-ray background (SXB) towards the
Galactic bulge region. Using the polytrope model of hot gas to account for the
SXB we corrected for the density gradient and estimated the midplane O VII
density at the solar neighborhood. The scale height of hot gas is then
estimated using the AGN absorption lines. It is suggested that a significant
portion of both the AGN absorption lines and the high-latitude SXB emission
lines can be explained by the hot gas in our Galaxy.Comment: Accepted for publication in ApJ. 7 pages, 9 eps figure