2,166 research outputs found
Mott Gap Excitations and Resonant Inelastic X-Ray Scattering in Doped Cuprates
Predictions are made for the momentum- and carrier-dependent degradation of
the Mott gap upon doping in high-Tc cuprates as would be observed in Cu K-edge
resonant inelastic x-ray scattering (RIXS). The two-dimensional Hubbard model
with second- and third-nearest-neighbor hopping terms has been studied by
numerical exact diagonalization. Special emphasis is placed on the
particle-hole asymmetry of the Mott gap excitations. We argue that the Mott gap
excitations observed by RIXS are significantly influenced by the interaction
between charge carriers and antiferromagnetic correlations.Comment: 4 pages, 4 figures, revised version; to be published in Phys. Rev.
Let
Raised polyamines in erythrocytes from melanoma-bearing mice and patients with solid tumours
The levels of polyamines (putrescine, spermidine and spermine) in erythrocytes and plasma were studied using Cloudman S-91 melanoma grown in the lungs of DBA/2 mice. Polyamine levels and the numbers of tumour-cell colonies in the lungs were determined at weekly intervals. Putrescine levels in both erythrocytes and plasma significantly increased 1 week after tumour inoculation. Three weeks after inoculation, however, putrescine levels in the erythrocytes showed a greater increase than those in plasma. Spermidine and spermine levels were initially high at 2 weeks in plasma and at 4 weeks in erythrocytes. However, by 6 weeks the spermidine levels showed a greater increase in erythrocytes than in plasma. These data suggest that erythrocytes may absorb and store polyamines released into the circulation
Interaction and Localization of One-electron Orbitals in an Organic Molecule: Fictitious Parameter Analysis for Multi-physics Simulations
We present a new methodology to analyze complicated multi-physics simulations
by introducing a fictitious parameter. Using the method, we study quantum
mechanical aspects of an organic molecule in water. The simulation is
variationally constructed from the ab initio molecular orbital method and the
classical statistical mechanics with the fictitious parameter representing the
coupling strength between solute and solvent. We obtain a number of
one-electron orbital energies of the solute molecule derived from the
Hartree-Fock approximation, and eigenvalue-statistical analysis developed in
the study of nonintegrable systems is applied to them. Based on the results, we
analyze localization properties of the electronic wavefunctions under the
influence of the solvent.Comment: 4 pages, 5 figures, the revised version will appear in J. Phys. Soc.
Jpn. Vol.76 (No.1
Longitudinal magnetic excitation in KCuCl3 studied by Raman scattering under hydrostatic pressures
We measure Raman scattering in an interacting spin-dimer system KCuCl3 under
hydrostatic pressures up to 5 GPa mediated by He gas. In the pressure-induced
quantum phase, we observe a one-magnon Raman peak, which originates from the
longitudinal magnetic excitationand is observable through the second-order
exchange interaction Raman process. We report the pressure dependence of the
frequency, halfwidth and Raman intensity of this mode.Comment: 4 pages, 3 figures, inpress in JPCS as a proceeding of LT2
Cross-Correlation between UHECR Arrival Distribution and Large-Scale Structure
We investigate correlation between the arrival directions of
ultra-high-energy cosmic rays (UHECRs) and the large-scale structure (LSS) of
the Universe by using statistical quantities which can find the angular scale
of the correlation. The Infrared Astronomical Satellite Point Source Redshift
Survey (IRAS PSCz) catalog of galaxies is adopted for LSS. We find a positive
correlation of the highest energy events detected by the Pierre Auger
Observatory (PAO) with the IRAS galaxies inside within the angular
scale of . This positive correlation observed in the southern
sky implies that a significant fraction of the highest energy events comes from
nearby extragalactic objects. We also analyze the data of the Akeno Giant Air
Shower Array (AGASA) which observed the northern hemisphere, but the obvious
signals of positive correlation with the galaxy distribution are not found.
Since the exposure of the AGASA is smaller than the PAO, the cross-correlation
in the northern sky should be tested using a larger number of events detected
in the future. We also discuss the correlation using the all-sky combined data
sets of both the PAO and AGASA, and find a significant correlation within . These angular scales can constrain several models of intergalactic
magnetic field. These cross-correlation signals can be well reproduced by a
source model in which the distribution of UHECR sources is related to the IRAS
galaxies.Comment: 21 pages,7 figure
DIRECT NUMERICAL SIMULATION OF FLUIDIZED BED WITH IMMERSED BOUNDARY METHOD
The applicability of the immersed boundary (IB) method, which is one of direct numerical simulations (DNS) for multiphase flow analyses, has been examined to simulate a fluidized bed. The volumetric-force type IB method developed by Kajishima et al. (2001) has been applied in the present work. While particle-fluid interaction force is calculated with the surface integral of fluid stress at the interface between particle and fluid in the standard IB method, the volume integral of interaction force is used in the volumetric-force type IB method. In order to validate the present simulation code, drag force and lift force firstly were calculated with IB method. Then calculated drag coefficients were compared with values estimated with Schiller-Nauman and Ergun equations, while calculated lift coefficients were compared with the previous simulated results. The difference of drag was within approximately 1% except in the range of low Reynolds number. Thus, the accuracy of the present simulation code was confirmed. Next, simulation of fluidized bed was carried out. Since DNS requires a large computer capacity, only 400 particles were used. The particle is 1.0mm in diameter and 2650kg/m3 in density. From the simulated results, concentrated upward stream lines from the bottom wall were observed in some regions. This inhomogeneous flow would be attributed to particulate structure
Discovery of a Wide Substellar Companion to a Nearby Low-Mass Star
We report the discovery of a wide (135+/-25 AU), unusually blue L5 companion
2MASS J17114559+4028578 to the nearby M4.5 dwarf G 203-50 as a result of a
targeted search for common proper motion pairs in the Sloan Digital Sky Survey
and the Two Micron All Sky Survey. Adaptive Optics imaging with Subaru
indicates that neither component is a nearly equal mass binary with separation
> 0.18", and places limits on the existence of additional faint companions. An
examination of TiO and CaH features in the primary's spectrum is consistent
with solar metallicity and provides no evidence that G 203-50 is metal poor. We
estimate an age for the primary of 1-5 Gyr based on activity. Assuming
coevality of the companion, its age, gravity and metallicity can be constrained
from properties of the primary, making it a suitable benchmark object for the
calibration of evolutionary models and for determining the atmospheric
properties of peculiar blue L dwarfs. The low total mass (M_tot=0.21+/-0.03
M_sun), intermediate mass ratio (q=0.45+/-0.14), and wide separation of this
system demonstrate that the star formation process is capable of forming wide,
weakly bound binary systems with low mass and BD components. Based on the
sensitivity of our search we find that no more than 2.2% of early-to-mid M
dwarfs (9.0 0.06 M_sun.Comment: 24 pages, 5 figures, accepted for publication in Ap
On the H emission from the Cephei system
Be stars, which are characterised by intermittent emission in their hydrogen
lines, are known to be fast rotators. This fast rotation is a requirement for
the formation of a Keplerian disk, which in turn gives rise to the emission.
However, the pulsating, magnetic B1IV star Cephei is a very slow
rotator that still shows H emission episodes like in other Be stars,
contradicting current theories. We investigate the hypothesis that the
H emission stems from the spectroscopically unresolved companion of
Cep. Spectra of the two unresolved components have been separated in
the 6350-6850\AA range with spectro-astrometric techniques, using 11 longslit
spectra obtained with ALFOSC at the Nordic Optical Telescope, La Palma. We find
that the H emission is not related to the primary in Cep, but
is due to its 3.4 magnitudes fainter companion. This companion has been
resolved by speckle techniques, but it remains unresolved by traditional
spectroscopy. The emission extends from about 400 to +400 km s. The
companion star in its 90-year orbit is likely to be a classical Be star with a
spectral type around B6-8. By identifying its Be-star companion as the origin
of the H emission behaviour, the enigma behind the Be status of the
slow rotator Cep has been resolved.Comment: 4 pages, 3 figures. Accepted by A&A Letter
- …