752 research outputs found

    Observation of the Mott Insulator to Superfluid Crossover of a Driven-Dissipative Bose-Hubbard System

    Get PDF
    Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for preparation and manipulation of quantum states. Here we report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photo-association for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: the melting of the Mott insulator is delayed and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its non-equilibrium dynamics.Comment: 26 pages, 17 figure

    Work function of bulk-insulating topological insulator Bi2-xSbxTe3-ySey

    Full text link
    Recent discovery of bulk insulating topological insulator (TI) Bi2-xSbxTe3-ySey paved a pathway toward practical device application of TIs. For realizing TI-based devices, it is necessary to contact TIs with a metal. Since the band-bending at the interface dominates the character of devices, knowledge of TIs' work function is of essential importance. We have determined the compositional dependence of work function in Bi2-xSbxTe3-ySey by high-resolution photoemission spectroscopy. The obtained work-function values (4.95-5.20 eV) show a systematic variation with the composition, well tracking the energy shift of the surface chemical potential seen by angle-resolved photoemission spectroscopy. The present result serves as a useful guide for developing TI-based electronic devices.Comment: 4pages, 2 figure

    First record of the terrestrial amphipod, Talitroides alluaudi (Chevreux, 1896) (Crustacea, Amphipoda, Brevitalitridae), from Japan

    Get PDF
    We report Talitroides alluaudi (Chevreux, 1896) from Miyako Island, Ryukyu Islands, Japan. Although this terrestrial amphipod is distributed worldwide, including Indo-Pacific islands, Europe, and North and South America, the present specimens represent the first record of this species from Japanese islands. The cytochrome c oxidase subunit I (COI) sequence of a Miyako Island specimen was unique compared with the known COI sequences from Taiwanese and Bermudan populations

    Direct Evidence for the Dirac-Cone Topological Surface States in Ternary Chalcogenide TlBiSe2

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on TlBiSe2, which is a member of the ternary chalcogenides theoretically proposed as candidates for a new class of three-dimensional topological insulators. By measuring the energy band dispersions over the entire surface Brillouin zone, we found a direct evidence for a non-trivial surface metallic state showing a X-shaped energy dispersion within the bulk band gap. The present result unambiguously establishes that TlBiSe2 is a strong topological insulator with a single Dirac cone at the Brillouin-zone center. The observed bulk band gap of 0.4 eV is the largest among known topological insulators, making TlBiSe2 the most promising material for studying room-temperature topological phenomena.Comment: 4 pages, 4 figure
    corecore