7,642 research outputs found

    Analysis of a particle antiparticle description of a soliton cellular automaton

    Full text link
    We present a derivation of a formula that gives dynamics of an integrable cellular automaton associated with crystal bases. This automaton is related to type D affine Lie algebra and contains usual box-ball systems as a special case. The dynamics is described by means of such objects as carriers, particles, and antiparticles. We derive it from an analysis of a recently obtained formula of the combinatorial R (an intertwiner between tensor products of crystals) that was found in a study of geometric crystals.Comment: LaTeX, 21 pages, 2 figure

    Interpolating between the Bose-Einstein and the Fermi-Dirac distributions in odd dimensions

    Full text link
    We consider the response of a uniformly accelerated monopole detector that is coupled to a superposition of an odd and an even power of a quantized, massless scalar field in flat spacetime in arbitrary dimensions. We show that, when the field is assumed to be in the Minkowski vacuum, the response of the detector is characterized by a Bose-Einstein factor in even spacetime dimensions, whereas a Bose-Einstein as well as a Fermi-Dirac factor appear in the detector response when the dimension of spacetime is odd. Moreover, we find that, it is possible to interpolate between the Bose-Einstein and the Fermi-Dirac distributions in odd spacetime dimensions by suitably adjusting the relative strengths of the detector's coupling to the odd and the even powers of the scalar field. We point out that the response of the detector is always thermal and we, finally, close by stressing the apparent nature of the appearance of the Fermi-Dirac factor in the detector response.Comment: RevTeX, 7 page

    Running-phase state in a Josephson washboard potential

    Full text link
    We investigate the dynamics of the phase variable of an ideal underdamped Josephson junction in switching current experiments. These experiments have provided the first evidence for macroscopic quantum tunneling in large Josephson junctions and are currently used for state read-out of superconducting qubits. We calculate the shape of the resulting macroscopic wavepacket and find that the propagation of the wavepacket long enough after a switching event leads to an average voltage increasing linearly with time.Comment: 6 pages, 3 figure

    Finite Black Hole Entropy and String Theory

    Get PDF
    An accelerating observer sees a thermal bath of radiation at the Hawking temperature which is proportional to the acceleration. Also, in string theory there is a Hagedorn temperature beyond which one cannot go without an infinite amount of energy. Several authors have shown that in the context of Hawking radiation a limiting temperature for string theory leads to a limiting acceleration, which for a black hole implies a minimum distance from the horizon for an observer to remain stationary. We argue that this effectively introduces a cutoff in Rindler space or the Schwarzschild geometry inside of which accelerations would exceed this maximum value. Furthermore, this natural cutoff in turn allows one to define a finite entropy for Rindler space or a black hole as all divergences were occurring on the horizon. In all cases if a particular relationship exists between Newton's constant and the string tension then the entropy of the string modes agrees with the Bekenstein-Hawking formula.Comment: 17 pages, 1 figure, Florida Preprint UFIFT-HEP-94-0

    The power spectrum of the circular noise

    Full text link
    The circular noise is important in connection to Mach's principle, and also as a possible probe of the Unruh effect. In this letter the power spectrum of the detector following the Trocheries-Takeno motion in the Minkowski vacuum is analytically obtained in the form of an infinite series. A mean distribution function and corresponding energy density are obtained for this particular detected noise. The analogous of a non constant temperature distribution is obtained. And in the end, a brief discussion about the equilibrium configuration is given.Comment: accepted for publication in GR

    Magnetotransport in Sr3PbO antiperovskite with three-dimensional massive Dirac electrons

    Full text link
    Novel topological phenomena are anticipated for three-dimensional (3D) Dirac electrons. The magnetotransport properties of cubic Sr3PbO{\rm Sr_{3}PbO} antiperovskite, theoretically proposed to be a 3D massive Dirac electron system, are studied. The measurements of Shubnikov-de Haas oscillations and Hall resistivity indicate the presence of a low density (1×1018\sim 1 \times 10^{18} cm3{\rm cm^{-3}}) of holes with an extremely small cyclotron mass of 0.01-0.06mem_{e}. The magnetoresistance Δρxx(B)\Delta\rho_{xx}(B) is linear in magnetic field BB with the magnitude independent of temperature. These results are fully consistent with the presence of 3D massive Dirac electrons in Sr3PbO{\rm Sr_{3}PbO}. The chemical flexibility of the antiperovskites and our findings in the family member, Sr3PbO{\rm Sr_{3}PbO}, point to their potential as a model system in which to explore exotic topological phases

    Spontaneous excitation of an accelerated multilevel atom in dipole coupling to the derivative of a scalar field

    Get PDF
    We study the spontaneous excitation of an accelerated multilevel atom in dipole coupling to the derivative of a massless quantum scalar field and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy of the atom. It is found that, in contrast to the case where a monopole like interaction between the atom and the field is assumed, there appear extra corrections proportional to the acceleration squared, in addition to corrections which can be viewed as a result of an ambient thermal bath at the Unruh temperature, as compared with the inertial case, and the acceleration induced correction terms show anisotropy with the contribution from longitudinal polarization being four times that from the transverse polarization for isotropically polarized accelerated atoms. Our results suggest that the effect of acceleration on the rate of change of the mean atomic energy is dependent not only on the quantum field to which the atom is coupled, but also on the type of the interaction even if the same quantum scalar field is considered.Comment: 11 pages, no figure
    corecore