44 research outputs found

    Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212

    Full text link
    The superconducting gap - an energy scale tied to the superconducting phenomena-opens on the Fermi surface at the superconducting transition temperature (TC) in conventional BCS superconductors. Quite differently, in underdoped high-TC superconducting cuprates, a pseudogap, whose relation to the superconducting gap remains a mystery, develops well above TC. Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above TC is one of the central questions in high-TC research. While some experimental evidence suggests they are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2212 in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap which opens at TC and exhibits a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasiparticles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments. The emerging two-gap phenomenon points to a picture of richer quantum configurations in high temperature superconductors.Comment: 16 pages, 4 figures, authors' version Corrected typos in the abstrac

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    Direct evidence for a competition between the pseudogap and high temperature superconductivity in the cuprates

    Full text link
    A pairing gap and coherence are the two hallmarks of superconductivity. In a classical BCS superconductor they are established simultaneously at Tc. In the cuprates, however, an energy gap (pseudogap) extends above Tc. The origin of this gap is one of the central issues in high temperature superconductivity. Recent experimental evidence demonstrates that the pseudogap and the superconducting gap are associated with different energy scales. It is however not clear whether they coexist independently or compete. In order to understand the physics of cuprates and improve their superconducting properties it is vital to determine whether the pseudogap is friend or foe of high temperature supercondctivity. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that the pseudogap and high temperature superconductivity represent two competing orders. We find that there is a direct correlation between a loss in the low energy spectral weight due to the pseudogap and a decrease of the coherent fraction of paired electrons. Therefore, the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing in the region of momentum space where the superconducting gap is largest. This leads to a very unusual state in the underdoped cuprates, where only part of the Fermi surface develops coherence.Comment: Improved version was published in Natur

    Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features

    Get PDF
    BACKGROUND: Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS: Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. RESULTS: Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. CONCLUSIONS: Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma

    Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshellwaste: an overview

    Get PDF
    As the current global trend towards more stringent environmental standards, technical applicability and cost-effectiveness became key factors in the selection of adsorbents for water and wastewater treatment. Recently, various low-cost adsorbents derived from agricultural waste, industrial by-products or natural materials, have been intensively investigated. In this respect, the eggshells from egg-breaking operations constitute significant waste disposal problems for the food industry, so the development of value-added by-products from this waste is to be welcomed. The egg processing industry is very competitive, with low profit margins due to global competition and cheap imports. Additionally, the costs associated with the egg shell disposal (mainly on landfill sites) are significant, and expected to continue increasing as landfill taxes increase. The aim of the present review is to provide an overview on the development of low-cost adsorbents derived from eggshell by-products

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Fish Oil Finishing Diet Maintains Optimal n-3 Long-Chain Fatty Acid Content in European Whitefish (Coregonus lavaretus)

    No full text
    This study examined the effect of substituting vegetable oil for fish oil in feed, with subsequent re-introduction of fish oil-rich feed (finishing feeding) in late stages of growth, on the fatty acids of cultivated European whitefish (Coregonus lavaretus). Restorative finishing feeding with fish oil-rich feed for 15 and 25 weeks was sufficient to change the total content of nutritionally valuable long-chain n-3 fatty acids, eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3), to correspond to that of fish fed the fish oil-rich feed throughout their lifespan. Under natural conditions, 15 and 25 weeks correspond to weight gains of 75% and 100% (i.e. doubling), respectively. Also, the fatty acid profile of the fish was restored after finishing periods of 15 and 25 weeks. Limiting the use of fish oil by lowering the overall fat content of the feed (no vegetable oil added) resulted in a decrease in the long-chain n-3 fatty acids. Based on the results, after receiving a vegetable oil-rich diet, restorative fish oil-rich feeding in the last stages of growth in European whitefish is nutritionally justified in order to balance nutritional gain for consumers with sustainable use of finite marine oils. The results encourage commercial efforts to further utilize and optimize finishing feeding practices.201
    corecore