29 research outputs found

    Multichannel Place Pitch Sensitivity in Cochlear Implant Recipients

    No full text
    Cochlear implant recipients perceive a rise in pitch when the site of stimulation is moved from the apex toward the base. The place pitch sensitivity is typically measured using the stimulation of single channels. However, all current cochlear implant devices stimulate multiple channels simultaneously or with pulses temporally interleaved. The primary goal of the present study is to test whether the sensitivity of a cochlear implant recipient to changes in perceived pitch associated with changes of place of excitation improves or deteriorates when the number of active channels is increased, compared with stimulation with only one active channel. Place pitch sensitivity was recorded in four Nucleus CI24 subjects as a function of number of active channels (from 1 to 8). Just noticeable differences were estimated from a constant stimuli 2AFC pitch-ranking experiment with roving loudness. Reference and comparison stimuli contained the same number of active channels but were shifted one or two electrodes toward the base or toward the apex. The place pitch sensitivity was measured using monopolar stimulation at two locations along the electrode array. To minimize cues related to loudness, the multichannel stimuli were loudness balanced relative to the single-channel stimuli presented at C-level. The number of active channels did not affect place pitch sensitivity. This is consistent with a model that compares the edges of the excitation pattern irrespective of the overlap between excitation patterns. There was a significant difference in sensitivity to place pitch among subjects. The average just noticeable differences of place pitch, extrapolated from a fitting procedure, for the subjects ranged from 0.25 mm to 0.46 mm
    corecore