79 research outputs found

    Personality styles in patients with fibromyalgia, major depression and healthy controls

    Get PDF
    BACKGROUND: The fibromyalgia syndrome (FMS) is suggested to be a manifestation of depression or affective spectrum disorder. We measured the cognitive style of patients with FMS to assess personality styles in 44 patients with fibromyalgia syndrome (FMS) by comparing them with 43 patients with major depressive disorder (MDD) and 41 healthy controls (HC). METHODS: Personality styles were measured by the Sociotropy and Autonomy Scale (SAS) and the Dysfunctional Attitude Scale (DAS). The Structured Clinical interview for DSM Axis I was applied to Axis I disorders, while the Beck Depression Inventory was used to measure depression severity. RESULTS: Patients with FMS in general have a sociotropic personality style similar to patients with MDD, and different from HC, but FMS patients without a lifetime history of MDD had a cognitive personality style different from patients with MDD and similar to HC. CONCLUSION: These findings suggest that a depressotypic personality style is related to depressive disorder, but not to FMS

    SGNP: An Essential Stress Granule/Nucleolar Protein Potentially Involved in 5.8s rRNA Processing/Transport

    Get PDF
    Background: Stress Granules (SG) are sites of accumulation of stalled initiation complexes that are induced following a variety of cellular insults. In a genetic screen for factors involved in protecting human myoblasts from acute oxidative stress, we identified a gene encoding a protein we designate SGNP (Stress Granule and Nucleolar Protein). Methodology/Principal Findings: A gene-trap insertional mutagenesis screen produced one insertion that conferred resistance to sodium arsenite. RT-PCR/39 RACE was used to identify the endogenous gene expressed as a GFP-fusion transcript. SGNP is localized in both the cytoplasm and nucleolus and defines a non-nucleolar compartment containing 5.8S rRNA, a component of the 60S ribosomal subunit. Under oxidative stress, SGNP nucleolar localization decreases and it rapidly co-localizes with stress granules. The decrease in nucleolar SGNP following oxidative stress was accompanied by a large increase in nucleolar 5.8S rRNA. Knockdown of SGNP with shRNA increased global mRNA translation but induced growth arrest and cell death. Conclusions: These results suggest that SGNP is an essential gene that may be involved in ribosomal biogenesis and translational control in response to oxidative stress

    The Distribution of GYR- and YLP-Like Motifs in Drosophila Suggests a General Role in Cuticle Assembly and Other Protein-Protein Interactions

    Get PDF
    Background: Arthropod cuticle is composed predominantly of a self-assembling matrix of chitin and protein. Genes encoding structural cuticular proteins are remarkably abundant in arthropod genomes, yet there has been no systematic survey of conserved motifs across cuticular protein families. Methodology/Principal Findings: Two short sequence motifs with conserved tyrosines were identified in Drosophila cuticular proteins that were similar to the GYR and YLP Interpro domains. These motifs were found in members of the CPR, Tweedle, CPF/CPFL, and (in Anopheles gambiae) CPLCG cuticular protein families, and the Dusky/Miniature family of cuticleassociated proteins. Tweedle proteins have a characteristic motif architecture that is shared with the Drosophila protein GCR1 and its orthologs in other species, suggesting that GCR1 is also cuticular. A resilin repeat, which has been shown to confer elasticity, matched one of the motifs; a number of other Drosophila proteins of unknown function exhibit a motif architecture similar to that of resilin. The motifs were also present in some proteins of the peritrophic matrix and the eggshell, suggesting molecular convergence among distinct extracellular matrices. More surprisingly, gene regulation, development, and proteolysis were statistically over-represented ontology terms for all non-cuticular matches in Drosophila. Searches against other arthropod genomes indicate that the motifs are taxonomically widespread. Conclusions: This survey suggests a more general definition for GYR and YLP motifs and reveals their contribution to severa

    Optimising care for patients with cognitive impairment and dementia following hip fracture

    Get PDF
    The global shift in demographics towards aging populations is leading to a commensurate increase in age-related disease and frailty. It is essential to optimise health services to meet current needs and prepare for anticipated future demands. This paper explores issues impacting on people living with cognitive impairment and/or dementia who experience a hip fracture and are cared for in acute settings. This is important given the high mortality and morbidity associated with this population. Given the current insufficiency of clear evidence on optimum rehabilitation of this patient group, this paper explored three key themes namely: recognition of cognitive impairment, response by way of training and education of staff to optimise care for this patient group and review of the importance of outcomes measures. Whilst there is currently insufficient evidence to draw conclusions about the optimal ways of caring for patients living with dementia following hip fracture, this paper concludes that future research should improve understanding of healthcare staff education to improve the outcomes for this important group of patients

    Actin Dynamics Regulate Multiple Endosomal Steps during Kaposi's Sarcoma-Associated Herpesvirus Entry and Trafficking in Endothelial Cells

    Get PDF
    The role of actin dynamics in clathrin-mediated endocytosis in mammalian cells is unclear. In this study, we define the role of actin cytoskeleton in Kaposi's sarcoma-associated herpesvirus (KSHV) entry and trafficking in endothelial cells using an immunofluorescence-based assay to visualize viral capsids and the associated cellular components. In contrast to infectivity or reporter assays, this method does not rely on the expression of any viral and reporter genes, but instead directly tracks the accumulation of individual viral particles at the nuclear membrane as an indicator of successful viral entry and trafficking in cells. Inhibitors of endosomal acidification reduced both the percentage of nuclei with viral particles and the total number of viral particles docking at the perinuclear region, indicating endocytosis, rather than plasma membrane fusion, as the primary route for KSHV entry into endothelial cells. Accordingly, a viral envelope protein was only detected on internalized KSHV particles at the early but not late stage of infection. Inhibitors of clathrin- but not caveolae/lipid raft-mediated endocytosis blocked KSHV entry, indicating that clathrin-mediated endocytosis is the major route of KSHV entry into endothelial cells. KSHV particles were colocalized not only with markers of early and recycling endosomes, and lysosomes, but also with actin filaments at the early time points of infection. Consistent with these observations, transferrin, which enters cells by clathrin-mediated endocytosis, was found to be associated with actin filaments together with early and recycling endosomes, and to a lesser degree, with late endosomes and lysosomes. KSHV infection induced dynamic actin cytoskeleton rearrangements. Disruption of the actin cytoskeleton and inhibition of regulators of actin nucleation such as Rho GTPases and Arp2/3 complex profoundly blocked KSHV entry and trafficking. Together, these results indicate an important role for actin dynamics in the internalization and endosomal sorting/trafficking of KSHV and clathrin-mediated endocytosis in endothelial cells

    The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects

    Get PDF
    We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future
    • …
    corecore