15 research outputs found

    Laypersons' understanding of relative risk reductions: Randomised cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite increasing recognition of the importance of involving patients in decisions on preventive healthcare interventions, little is known about how well patients understand and utilise information provided on the relative benefits from these interventions. The aim of this study was to explore whether lay people can discriminate between preventive interventions when effectiveness is presented in terms of relative risk reduction (RRR), and whether such discrimination is influenced by presentation of baseline risk.</p> <p>Methods</p> <p>The study was a randomised cross-sectional interview survey of a representative sample (n = 1,519) of lay people with mean age 59 (range 40–98) years in Denmark. In addition to demographic information, respondents were asked to consider a hypothetical drug treatment to prevent heart attack. Its effectiveness was randomly presented as RRR of 10, 20, 30, 40, 50 or 60 percent, and half of the respondents were presented with quantitative information on the baseline risk of heart attack. The respondents had also been asked whether they were diagnosed with hypercholesterolemia or had experienced a heart attack.</p> <p>Results</p> <p>In total, 873 (58%) of the respondents consented to the hypothetical treatment. While 49% accepted the treatment when RRR = 10%, the acceptance rate was 58–60% for RRR>10. There was no significant difference in acceptance rates across respondents irrespective of whether they had been presented with quantitative information on baseline risk or not.</p> <p>Conclusion</p> <p>In this study, lay people's decisions about therapy were only slightly influenced by the magnitude of the effect when it was presented in terms of RRR. The results may indicate that lay people have difficulties in discriminating between levels of effectiveness when they are presented in terms of RRR.</p

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    Bioengineering Cartilage Growth, Maturation, and Form

    Get PDF
    Cartilage of articular joints grows and matures to achieve characteristic sizes, forms, and functional properties. Through these processes, the tissue not only serves as a template for bone growth but also yields mature articular cartilage providing joints with a low-friction, wear-resistant bearing material. The study of cartilage growth and maturation is a focus of both cartilage biologists and bioengineers with one goal of trying to create biologic tissue substitutes for the repair of damaged joints. Experimental approaches both in vivo and in vitro are being used to better understand the mechanisms and regulation of growth and maturation processes. This knowledge may facilitate the controlled manipulation of cartilage size, shape, and maturity to meet the criteria needed for successful clinical applications. Mathematical models are also useful tools for quantitatively describing the dynamically changing composition, structure and function of cartilage during growth and maturation and may aid the development of tissue engineering solutions. Recent advances in methods of cartilage formation and culture which control the size, shape, and maturity of these tissues are numerous and provide contrast to the physiologic development of cartilage

    The role of national registries in improving patient safety for hip and knee replacements

    No full text
    Background The serious adverse events associated with metal on metal hip replacements have highlighted the importance of improving methods for monitoring surgical implants. The new European Union (EU) device regulation will enforce post-marketing surveillance based on registries among other surveillance tools. Europe has a common regulatory environment, a common market for medical devices, and extensive experience with joint replacement registries. In this context, we elaborate how joint replacement registries, while building on existing structure and data, can better ensure safety and balance risks and benefits. Discussion Actions to improve registry-based implant surveillance include: enriching baseline and diversifying outcomes data collection; improving methodology to limit bias; speeding-up failure detection by active real-time monitoring; implementing risk-benefit analysis; coordinating collaboration between registries; and translating knowledge gained from the data into clinical decision-making and public health policy. Summary The changes proposed here will improve patient safety, enforce the application of the new legal EU requirements, augment evidence, improve clinical decision-making, facilitate value-based health-care delivery, and provide up-to-date guidance for public health
    corecore