27 research outputs found

    Challenges and Opportunities in Central Nervous System Drug Discovery

    Full text link
    The development of new drugs for disorders of the central nervous system (CNS) presents unique challenges when compared with other disease areas. These include an incomplete understanding of the biology of multifaceted CNS conditions such as Alzheimer's disease, the presence of a blood–brain barrier that restricts the flow of molecules to the brain, and a lack of clinically relevant animal models in which to test new drugs. In this review, we aim to discuss some of these issues at each stage of the drug discovery process, provide examples of recent work addressing them, and consider the options available to researchers in the future

    Targeting the Oxytocin System: New Pharmacotherapeutic Approaches

    Full text link
    Deficits in social behavioral domains, such as interpersonal communication, emotion recognition, and empathy, are a characteristic symptom in several neuropsychiatric disorders, including schizophrenia and autism spectrum disorder (ASD). The neuropeptide oxytocin (OT) has emerged as a key regulator of diverse social behaviors in vertebrates and, thus, has been identified as a potential therapeutic target for improving social dysfunction. In recent years, the field of OT research has seen an explosion of scientific inquiry, producing a more comprehensive picture of oxytocinergic signaling and the pathways that regulate its release and degradation in the brain. In this review, we provide an analysis of how this information is being exploited to accelerate the discovery of novel oxytocinergic therapeutics

    Reversing binding sensitivity to A147T translocator protein

    Full text link
    The translocator protein (TSPO) is a target for the development of neuroinflammation imaging agents. Clinical translation of TSPO PET ligands, such as [11C]DPA-713, has been hampered by the presence of a common polymorphism (A147T TSPO), at which all second-generation TSPO ligands lose affinity. Little is known about what drives binding at A147T compared to WT TSPO. This study aimed to identify moieties in DPA-713, and related derivatives, that influence binding at A147T compared to WT TSPO. We found changes to the nitrogen position and number in the heterocyclic core influences affinity to WT and A147T to a similar degree. Hydrogen bonding groups in molecules with an indole core improve binding at A147T compared to WT, a strategy that generated compounds that possess up to ten-times greater affinity for A147T. These results should inform the future design of compounds that bind both A147T and WT TSPO for use in neuroinflammation imaging

    The role of polycyclic frameworks in modulating P2X<inf>7</inf> receptor function

    Full text link
    Herein we describe our recent attempts to target the P2X7 receptor for potential treatment of neurological disorders. This work focusses on different polycycles including carborane, adamantane or cubane, joined by either a cyanoguanidine or an amide linker to phenyl or isoquinoline moieties. We have demonstrated the superiority of the adamantyl moiety over other polycycles in terms of synthetic accessibility and biological (cellular) activity. We have also shown that an amide or cyanoguanidine linker can greatly alter the biological activity of compounds. This SAR study provides important insights into the types of functionality required to target the P2X7 receptor

    In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET

    Get PDF
    BACKGROUND: Over the past decades, positron emission tomography (PET) imaging has become an increasingly useful research modality in the field of multiple sclerosis (MS) research, as PET can visualise molecular processes, such as neuroinflammation, in vivo. The second generation PET radioligand [18F]DPA714 binds with high affinity to the 18-kDa translocator-protein (TSPO), which is mainly expressed on activated microglia. The aim of this proof of concept study was to evaluate this in vivo marker of neuroinflammation in primary and secondary progressive MS. METHODS: All subjects were genotyped for the rs6971 polymorphism within the TSPO gene, and low-affinity binders were excluded from participation in this study. Eight patients with progressive MS and seven age and genetic binding status matched healthy controls underwent a 60 min dynamic PET scan using [18F]DPA714, including both continuous on-line and manual arterial blood sampling to obtain metabolite-corrected arterial plasma input functions. RESULTS: The optimal model for quantification of [18F]DPA714 kinetics was a reversible two-tissue compartment model with additional blood volume parameter. For genetic high-affinity binders, a clear increase in binding potential was observed in patients with MS compared with age-matched controls. For both high and medium affinity binders, a further increase in binding potential was observed in T2 white matter lesions compared with non-lesional white matter. Volume of distribution, however, did not differentiate patients from healthy controls, as the large non-displaceable compartment of [18F]DPA714 masks its relatively small specific signal. CONCLUSION: The TSPO radioligand [18F]DPA714 can reliably identify increased focal and diffuse neuroinflammation in progressive MS when using plasma input-derived binding potential, but observed differences were predominantly visible in high-affinity binders

    Rapid Antibacterial Activity of Cannabichromenic Acid against Methicillin-Resistant Staphylococcus aureus.

    Full text link
    Methicillin-resistant Staphylococcus aureus (MRSA) has proven to be an imminent threat to public health, intensifying the need for novel therapeutics. Previous evidence suggests that cannabinoids harbour potent antibacterial activity. In this study, a group of previously inaccessible phytocannabinoids and synthetic analogues were examined for potential antibacterial activity. The minimum inhibitory concentrations and dynamics of bacterial inhibition, determined through resazurin reduction and time-kill assays, revealed the potent antibacterial activity of the phytocannabinoids against gram-positive antibiotic-resistant bacterial species, including MRSA. One phytocannabinoid, cannabichromenic acid (CBCA), demonstrated faster and more potent bactericidal activity than vancomycin, the currently recommended antibiotic for the treatment of MRSA infections. Such bactericidal activity was sustained against low-and high-dose inoculums as well as exponential- and stationary-phase MRSA cells. Further, mammalian cell viability was maintained in the presence of CBCA. Finally, microscopic evaluation suggests that CBCA may function through the degradation of the bacterial lipid membrane and alteration of the bacterial nucleoid. The results of the current study provide encouraging evidence that cannabinoids may serve as a previously unrecognised resource for the generation of novel antibiotics active against MRSA

    Tobramycin and Colistin display anti-inflammatory properties in CuFi-1 cystic fibrosis cell line.

    Full text link
    Current cystic fibrosis (CF) treatment strategies are primarily focused on oral/inhaled anti-inflammatories and antibiotics, resulting in a considerable treatment burden for CF patients. Therefore, combination treatments consisting of anti-inflammatories with antibiotics could reduce the CF treatment burden. However, there is an imperative need to understand the potential drug-drug interactions of these combination treatments to determine their efficacy. Thus, this study aimed to determine the interactions of the anti-inflammatory agent Ibuprofen with each of the CF-approved inhaled antibiotics (Tobramycin, Colistin and its prodrug colistimethate sodium/Tadim) and anti-bacterial and anti-inflammatory efficacy. Chemical interactions of the Ibuprofen:antibiotic combinations were elucidated using High-Resolution Mass-Spectrometry (HRMS) and 1H NMR. HRMS showed pairing of Ibuprofen and Tobramycin, further confirmed by 1H NMR whilst no pairing was observed for either Ibuprofen:Colistin or Ibuprofen:Tadim combinations. The anti-bacterial activity of the combinations against Pseudomonas aeruginosa showed that neither paired nor non-paired Ibuprofen:antibiotic therapies altered the anti-bacterial activity. The anti-inflammatory efficacy of the combination therapies was next determined at two different concentrations (Low and High) using in vitro models of NuLi-1 (healthy) and CuFi-1 (CF) cell lines. Differential response in the anti-inflammatory efficacy of Ibuprofen:Tobramycin combination was observed between the two concentrations due to changes in the structural conformation of the paired Ibuprofen:Tobramycin complex at High concentration, confirmed by 1H NMR. In contrast, the non-pairing of the Ibuprofen:Colistin and Ibuprofen:Tadim combinations showed a significant decrease in IL-8 secretion at both the concentrations. Importantly, all antibiotics alone showed anti-inflammatory properties, highlighting the inherent anti-inflammatory properties of these antibiotics
    corecore