72 research outputs found

    Short- and long-term cause-specific survival of patients with inflammatory breast cancer

    Get PDF
    BACKGROUND: Inflammatory breast cancer (IBC) had been perceived to have a poor prognosis. Oncologists were not enthusiastic in the past to give aggressive treatment. Single institution studies tend to have small patient numbers and limited years of follow-up. Most studies do not report 10-, 15- or 20-year results. METHODS: Data was obtained from the population-based database of the Surveillance, Epidemiology, and End Results program of the National Cancer Institute from 1975–1995 using SEER*Stat5.0 software. This period of 21 years was divided into 7 periods of 3 years each. The years were chosen so that there was adequate follow-up information to 2000. ICD-O-2 histology 8530/3 was used to define IBC. The lognormal model was used for statistical analysis. RESULTS: A total of 1684 patients were analyzed, of which 84% were white, 11% were African Americans, and 5% belonged to other races. Age distribution was < 30 years in 1%, 30–40 in 11%, 40–50 in 22%, 50–60 in 24%, 60–70 in 21%, and > 70 in 21%. The lognormal model was validated for 1975–77 and for 1978–80, since the 10-, 15- and 20-year cause-specific survival (CSS) rates, could be calculated using the Kaplan-Meier method with data available in 2000. The data were then used to estimate the 10-, 15- and 20-year CSS rates for the more recent years, and to study the trend of improvement in survival. There were increasing incidences of IBC: 134 patients in the 1975–77 period to 416 patients in the 1993–95 period. The corresponding 20-year CSS increased from 9% to 20% respectively with standard errors of less than 4%. CONCLUSION: The improvement of survival during the study period may be due to introduction of more aggressive treatments. However, there seem to be no further increase of long-term CSS, which should encourage oncologists to find even more effective treatments. Because of small numbers of patients, randomized studies will be difficult to conduct. The SEER population-based database will yield the best possible estimate of the trend in improvement of survival for patients with IBC

    Identification of multiple integrin β1 homologs in zebrafish (Danio rerio)

    Get PDF
    BACKGROUND: Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions

    PKQuest: a general physiologically based pharmacokinetic model. Introduction and application to propranolol

    Get PDF
    BACKGROUND: A "physiologically based pharmacokinetic" (PBPK) approach uses a realistic model of the animal to describe the pharmacokinetics. Previous PBPKs have been designed for specific solutes, required specification of a large number of parameters and have not been designed for general use. METHODS: This new PBPK program (PKQuest) includes a "Standardhuman" and "Standardrat" data set so that the user input is minimized. It has a simple user interface, graphical output and many new features: 1) An option that uses the measured plasma concentrations to solve for the time course of the gastrointestinal, intramuscular, intraperotineal or skin absorption and systemic availability of a drug – for a general non-linear system. 2) Capillary permeability limitation defined in terms of the permeability-surface area products. 4) Saturable plasma and tissue protein binding. 5) A lung model that includes perfusion-ventilation mismatch. 6) A general optimization routine using either a global (simulated annealing) or local (Powell) minimization applicable to all model parameters. RESULTS: PKQuest was applied to measurements of human propranolol pharmacokinetics and intestinal absorption. A meal has two effects: 1) increases portal blood flow by 50%; and 2) decreases liver metabolism by 20%. There is a significant delay in the oval propranolol absorption in fasting subjects that is absent in fed subjects. The oral absorption of the long acting form of propranolol continues for a period of more than 24 hours. CONCLUSIONS: PKQuest provides a new general purpose, easy to use, freely distributed and physiologically rigorous PBPK software routine

    Disease-Associated Mutant Ubiquitin Causes Proteasomal Impairment and Enhances the Toxicity of Protein Aggregates

    Get PDF
    Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer's disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ubext) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ubext or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ubext altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ubext markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ubext interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration

    Observational Constraints on the Common Envelope Phase

    Full text link
    The common envelope phase was first proposed more than forty years ago to explain the origins of evolved, close binaries like cataclysmic variables. It is now believed that the phase plays a critical role in the formation of a wide variety of other phenomena ranging from type Ia supernovae through to binary black holes, while common envelope mergers are likely responsible for a range of enigmatic transients and supernova imposters. Yet, despite its clear importance, the common envelope phase is still rather poorly understood. Here, we outline some of the basic principles involved, the remaining questions as well as some of the recent observational hints from common envelope phenomena - namely planetary nebulae and luminous red novae - which may lead to answering these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st
    • …
    corecore