1,558 research outputs found

    A framework for interpreting genome-wide association studies of psychiatric disorders

    Get PDF
    Genome-wide association studies (GWAS) have yielded a plethora of new findings in the past 3 years. By early 2009, GWAS on 47 samples of subjects with attention-deficit hyperactivity disorder, autism, bipolar disorder, major depressive disorder and schizophrenia will be completed. Taken together, these GWAS constitute the largest biological experiment ever conducted in psychiatry (59 000 independent cases and controls, 7700 family trios and >40 billion genotypes). We know that GWAS can work, and the question now is whether it will work for psychiatric disorders. In this review, we describe these studies, the Psychiatric GWAS Consortium for meta-analyses of these data, and provide a logical framework for interpretation of some of the conceivable outcomes

    Gene-based partial least-squares approaches for detecting rare variant associations with complex traits

    Get PDF
    Genome-wide association studies are largely based on single-nucleotide polymorphisms and rest on the common disease/common variants (single-nucleotide polymorphisms) hypothesis. However, it has been argued in the last few years and is well accepted now that rare variants are valuable for studying common diseases. Although current genome-wide association studies have successfully discovered many genetic variants that are associated with common diseases, detecting associated rare variants remains a great challenge. Here, we propose two partial least-squares approaches to aggregate the signals of many single-nucleotide polymorphisms (SNPs) within a gene to reveal possible genetic effects related to rare variants. The availability of the 1000 Genomes Project offers us the opportunity to evaluate the effectiveness of these two gene-based approaches. Compared to results from a SNP-based analysis, the proposed methods were able to identify some (rare) SNPs that were missed by the SNP-based analysis

    Estimating heritability using family and unrelated individuals data

    Get PDF
    For the family data from Genetic Analysis Workshop 17, we obtained heritability estimates of quantitative traits Q1 and Q4 using the ASSOC program in the S.A.G.E. software package. ASSOC is a family-based method that estimates heritability through the estimation of variance components. The covariate-adjusted mean heritability was 0.650 for Q1 and 0.745 for Q4. For the unrelated individuals data, we estimated the heritability of Q1 as the proportion of total variance that can be accounted for by all single-nucleotide polymorphisms under an additive model. We examined a novel ordinary least-squares method, a naïve restricted maximum-likelihood method, and a calibrated restricted maximum-likelihood method. We applied the different methods to all 200 replicates for Q1. We observed that the ordinary least-squares method yielded many estimates outside the interval [0, 1]. The restricted maximum-likelihood estimates were more stable than the ordinary least-squares estimates. The naïve restricted maximum-likelihood method yielded an average estimate of 0.462 ± 0.1, and the calibrated restricted maximum-likelihood method yielded an average of 0.535 ± 0.121. Our results demonstrate discrepancies in heritability estimates using the family data and the unrelated individuals data

    Successful identification of rare variants using oligogenic segregation analysis as a prioritizing tool for whole-exome sequencing studies

    Get PDF
    We aim to identify rare variants that have large effects on trait variance using a cost-efficient strategy. We use an oligogenic segregation analysis as a prioritizing tool for whole-exome sequencing studies to identify families more likely to harbor rare variants, by estimating the mean number of quantitative trait loci (QTLs) in each family. We hypothesize that families with additional QTLs, relative to the other families, are more likely to segregate functional rare variants. We test the association of rare variants with the traits only in regions where at least modest evidence of linkage with the trait is observed, thereby reducing the number of tests performed. We found that family 7 harbored an estimated two, one, and zero additional QTLs for traits Q1, Q2, and Q4, respectively. Two rare variants (C4S4935 and C6S2981) segregating in family 7 were associated with Q1 and explained a substantial proportion of the observed linkage signal. These rare variants have 31 and 22 carriers, respectively, in the 128-member family and entered through a single but different founder. For Q2, we found one rare variant unique to family 7 that showed small effect and weak evidence of association; this was a false positive. These results are a proof of principle that prioritizing the sequencing of carefully selected extended families is a simple and cost-efficient design strategy for sequencing studies aiming at identifying functional rare variants

    Survival bias and drug interaction can attenuate cross-sectional case-control comparisons of genes with health outcomes. An example of the kinesin-like protein 6 (KIF6) Trp719Arg polymorphism and coronary heart disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-control studies typically exclude fatal endpoints from the case set, which we hypothesize will substantially underestimate risk if survival is genotype-dependent. The loss of fatal cases is particularly nontrivial for studies of coronary heart disease (CHD) because of significantly reduced survival (34% one-year fatality following a coronary attack). A case in point is the <it>KIF6 </it>Trp719Arg polymorphism (rs20455). Whereas six prospective studies have shown that carriers of the <it>KIF6 </it>Trp719Arg risk allele have 20% to 50% greater CHD risk than non-carriers, several cross-sectional case-control studies failed to show that carrier status is related to CHD. Computer simulations were therefore employed to assess the impact of the loss of fatal events on gene associations in cross-sectional case-control studies, using <it>KIF6 </it>Trp719Arg as an example.</p> <p>Results</p> <p>Ten replicates of 1,000,000 observations each were generated reflecting Canadian demographics. Cardiovascular disease (CVD) risks were assigned by the Framingham equation and events distributed among <it>KIF6 </it>Trp719Arg genotypes according to published prospective studies. Logistic regression analysis was used to estimate odds ratios between <it>KIF6 </it>genotypes. Results were examined for 33%, 41.5%, and 50% fatality rates for incident CVD.</p> <p>In the absence of any difference in percent fatalities between genotypes, the odds ratios (carriers vs. noncarriers) were unaffected by survival bias, otherwise the odds ratios were increasingly attenuated as the disparity between fatality rates increased between genotypes. Additional simulations demonstrated that statin usage, shown in four clinical trials to substantially reduce the excess CHD risk in the <it>KIF6 </it>719Arg variant, should also attenuate the <it>KIF6 </it>719Arg odds ratio in case-control studies.</p> <p>Conclusions</p> <p>These computer simulations show that exclusions of prior CHD fatalities attenuate odds ratios of case-control studies in proportion to the difference in the percent fatalities between genotypes. Disproportionate CHD survival for <it>KIF6 </it>Trip719Arg carriers is suggested by their 50% greater risk for recurrent myocardial infarction. This, and the attenuation of <it>KIF6 </it>719Arg carrier risk with statin use, may explain the genotype's weak association with CHD in cross-sectional case-control studies. The results may be relevant to the underestimation of risk in cross-sectional case-control studies of other genetic CHD-risk factors affecting survival.</p

    Q&A: Promise and pitfalls of genome-wide association studies

    Get PDF

    Evaluation of pooled association tests for rare variant identification

    Get PDF
    Genome-wide association studies have successfully identified many common variants associated with complex human diseases. However, a large portion of the remaining heritability cannot be explained by these common variants. Exploring rare variants associated with diseases is now catching more attention. Several methods have been recently proposed for identification of rare variants. Among them, the fixed-threshold, weighted-sum, and variable-threshold methods are effective in combining the information of multiple variants into a functional unit; these approaches are commonly used. We evaluate the performance of these three methods. Based on our analyses of the Genetic Analysis Workshop 17 data, we find that no method is universally better than the others. Furthermore, adjusting for potential covariates can not only increase the true-positive proportions but also reduce the false-positive proportions. Our study concludes that there is no uniformly most powerful test among the three methods we compared (the fixed-threshold, weighted-sum, and variable-threshold methods), and their performances depend on the underlying genetic architecture of a disease

    Using the posterior distribution of deviance to measure evidence of association for rare susceptibility variants

    Get PDF
    Aitkin recently proposed an integrated Bayesian/likelihood approach that he claims is general and simple. We have applied this method, which does not rely on informative prior probabilities or large-sample results, to investigate the evidence of association between disease and the 16 variants in the KDR gene provided by Genetic Analysis Workshop 17. Based on the likelihood of logistic regression models and considering noninformative uniform prior probabilities on the coefficients of the explanatory variables, we used a random walk Metropolis algorithm to simulate the distributions of deviance and deviance difference. The distribution of probability values and the distribution of the proportions of positive deviance differences showed different locations, but the direction of the shift depended on the genetic factor. For the variant with the highest minor allele frequency and for any rare variant, standard logistic regression showed a higher power than the novel approach. For the two variants with the strongest effects on Q1 under a type I error rate of 1%, the integrated approach showed a higher power than standard logistic regression. The advantages and limitations of the integrated Bayesian/likelihood approach should be investigated using additional regions and considering alternative regression models and collapsing methods

    Challenges and directions: an analysis of Genetic Analysis Workshop 17 data by collapsing rare variants within family data

    Get PDF
    Recent studies suggest that the traditional case-control study design does not have sufficient power to discover rare risk variants. Two different methods—collapsing and family data—are suggested as alternatives for discovering these rare variants. Compared with common variants, rare variants have unique characteristics. In this paper, we assess the distribution of rare variants in family data. We notice that a large number of rare variants exist only in one or two families and that the association result is largely shaped by those families. Therefore we explore the possibility of integrating both the collapsing method and the family data method. This combinational approach offers a potential power boost for certain causal genes, including VEGFA, VEGFC, SIRT1, SREBF1, PIK3R3, VLDLR, PLAT, and FLT4, and thus deserves further investigation

    Association tests for rare and common variants based on genotypic and phenotypic measures of similarity between individuals

    Get PDF
    Genome-wide association studies have helped us identify thousands of common variants associated with several widespread complex diseases. However, for most traits, these variants account for only a small fraction of phenotypic variance or heritability. Next-generation sequencing technologies are being used to identify additional rare variants hypothesized to have higher effect sizes than the already identified common variants, and to contribute significantly to the fraction of heritability that is still unexplained. Several pooling strategies have been proposed to test the joint association of multiple rare variants, because testing them individually may not be optimal. Within a gene or genomic region, if there are both rare and common variants, testing their joint association may be desirable to determine their synergistic effects. We propose new methods to test the joint association of several rare and common variants with binary and quantitative traits. Our association test for quantitative traits is based on genotypic and phenotypic measures of similarity between pairs of individuals. For the binary trait or case-control samples, we recently proposed an association test based on the genotypic similarity between individuals. Here, we develop a modified version of this test for rare variants. Our tests can be used for samples taken from multiple subpopulations. The power of our test statistics for case-control samples and quantitative traits was evaluated using the GAW17 simulated data sets. Type I error rates for the proposed tests are well controlled. Our tests are able to identify some of the important causal genes in the GAW17 simulated data sets
    corecore