18 research outputs found

    The spatial scale of density-dependent growth and implications for dispersal from nests in juvenile Atlantic salmon

    Get PDF
    By dispersing from localized aggregations of recruits, individuals may obtain energetic benefits due to reduced experienced density. However, this will depend on the spatial scale over which individuals compete. Here, we quantify this scale for juvenile Atlantic salmon (Salmo salar) following emergence and dispersal from nests. A single nest was placed in each of ten replicate streams during winter, and information on the individual positions (±1 m) and the body sizes of the resulting young-of-the-year (YOY) juveniles was obtained by sampling during the summer. In six of the ten streams, model comparisons suggested that individual body size was most closely related to the density within a mean distance of 11 m (range 2–26 m). A link between body size and density on such a restricted spatial scale suggests that dispersal from nests confers energetic benefits that can counterbalance any survival costs. For the four remaining streams, which had a high abundance of trout and older salmon cohorts, no single spatial scale could best describe the relation between YOY density and body size. Energetic benefits of dispersal associated with reduced local density therefore appear to depend on the abundance of competing cohorts or species, which have spatial distributions that are less predictable in terms of distance from nests. Thus, given a trade-off between costs and benefits associated with dispersal, and variation in benefits among environments, we predict an evolving and/or phenotypically plastic growth rate threshold which determines when an individual decides to disperse from areas of high local density

    Multi-level analysis of electronic health record adoption by health care professionals: A study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The electronic health record (EHR) is an important application of information and communication technologies to the healthcare sector. EHR implementation is expected to produce benefits for patients, professionals, organisations, and the population as a whole. These benefits cannot be achieved without the adoption of EHR by healthcare professionals. Nevertheless, the influence of individual and organisational factors in determining EHR adoption is still unclear. This study aims to assess the unique contribution of individual and organisational factors on EHR adoption in healthcare settings, as well as possible interrelations between these factors.</p> <p>Methods</p> <p>A prospective study will be conducted. A stratified random sampling method will be used to select 50 healthcare organisations in the Quebec City Health Region (Canada). At the individual level, a sample of 15 to 30 health professionals will be chosen within each organisation depending on its size. A semi-structured questionnaire will be administered to two key informants in each organisation to collect organisational data. A composite adoption score of EHR adoption will be developed based on a Delphi process and will be used as the outcome variable. Twelve to eighteen months after the first contact, depending on the pace of EHR implementation, key informants and clinicians will be contacted once again to monitor the evolution of EHR adoption. A multilevel regression model will be applied to identify the organisational and individual determinants of EHR adoption in clinical settings. Alternative analytical models would be applied if necessary.</p> <p>Results</p> <p>The study will assess the contribution of organisational and individual factors, as well as their interactions, to the implementation of EHR in clinical settings.</p> <p>Conclusions</p> <p>These results will be very relevant for decision makers and managers who are facing the challenge of implementing EHR in the healthcare system. In addition, this research constitutes a major contribution to the field of knowledge transfer and implementation science.</p

    Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions

    Get PDF
    Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate—T4S channel docking

    New Paradigms for Modern Biogeography Conservation

    No full text
    Biodiversity conservation is a relatively recent, synthetic field that applies the principles of ecology, biogeography, population genetics, economics, sociology, anthropology, philosophy, and other theoretical disciplines to the maintenance of biodiversity worldwide. Conservation biogeography concerns the application of biogeographical principles, theories, and analyses, being those concerned with the distributional dynamics of taxonomic units individually and collectively up with their relevant limiting processes, to problems concerning biodiversity conservation. Systematic conservation planning is a comprehensive and scientifically sound method aimed at providing decision support for choices between alternate conservation actions. Spatially, it entails a set of stages for choosing, locating, configuring, and implementing conservation actions (protected areas in particular), such that the benefits of the actions therein exceed specified amounts of ideal protection of biodiversity features and processes. Optimization procedures are key in providing planners the very best efficient and effectiveness solutions. Aichi Target 11 refers to a global protected area coverage target, established under the Convention on Biological Diversity in 2010. It states that, by 2020, at least 17% of terrestrial areas and 10% of coastal and marine areas need to be protected through effective, ecologically representative and well-connected systems of protected areas and other effective area-based conservation measures. For 2030 a new target is being developed with preliminary advices supporting a 30% protected area coverage for both terrestrial and coastal/marine realms. Global change entangles the worldwide impact of human activity on the key processes that govern the functioning of the biosphere. These include the climate system, stability of the ozone layer, cycles of elements and materials (such as nitrogen, carbon, phosphorus, or water), the balance and distribution of species, and ecosystems and their underlying processes
    corecore