14 research outputs found
Probing e-e interactions in a periodic array of GaAs quantum wires
We present the results of non-linear tunnelling spectroscopy between an array
of independent quantum wires and an adjacent two-dimensional electron gas
(2DEG) in a double-quantum-well structure. The two layers are separately
contacted using a surface-gate scheme, and the wires are all very regular, with
dimensions chosen carefully so that there is minimal modulation of the 2DEG by
the gates defining the wires. We have mapped the dispersion spectrum of the 1D
wires down to the depletion of the last 1D subband by measuring the conductance
\emph{G} as a function of the in-plane magnetic field \emph{B}, the interlayer
bias and the wire gate voltage. There is a strong suppression of
tunnelling at zero bias, with temperature and dc-bias dependences consistent
with power laws, as expected for a Tomonaga-Luttinger Liquid caused by
electron-electron interactions in the wires. In addition, the current peaks fit
the free-electron model quite well, but with just one 1D subband there is extra
structure that may indicate interactions.Comment: 3 pages, 3 figures; formatting correcte
Recommended from our members
Plant Physiological Aspects of Silicon
The element silicon, Si, represents an anomaly in plant physiology (Epstein, 1994, 1999b). Plants contain the element in amounts comparable to those of such macronutrient elements as phosphorus, calcium, magnesium, viz. at tissue concentrations (dry weight basis) of about 0.1-10%, although both lower and higher values may be encountered. In some plants, such as rice and sugarcane, Si may be the mineral element present in largest amount. In much of plant physiological research, however, Si is considered a nonentity. Thus, not a single formulation of the widely used nutrient solutions includes Si. Experimental plants grown in these solutions are therefore abnormally low in their content of the element, being able to obtain only what Si is present as an unavoidable contaminant of the nutrient salts used, and from the experimental environment and their own seeds. The reason for the astonishing discrepancy between the prominence of Si in plants and its neglect in much of the enterprise of plant physiological research is that Si does not qualify as an ''essential'' element. Ever since the introduction of the solution culture method in the middle of the last century (Epstein, 1999a, b) it has been found that higher plants can grow in nutrient solutions in the formulation of which Si is not included. The only exceptions are the Equisitaceae (horsetails or scouring rushes), for which Si is a quantitatively major essential element
Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories
We obtain the solution that corresponds to a screwed superconducting cosmic
string (SSCS) in the framework of a general scalar-tensor theory including
torsion. We investigate the metric of the SSCS in Brans-Dicke theory with
torsion and analyze the case without torsion. We show that in the case with
torsion the space-time background presents other properties different from that
in which torsion is absent. When the spin vanish, this torsion is a
-gradient and then it propagates outside of the string. We investigate
the effect of torsion on the gravitational force and on the geodesics of a
test-particle moving around the SSCS. The accretion of matter by wakes
formation when a SSCS moves with speed is investigated. We compare our
results with those obtained for cosmic strings in the framework of
scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica
de Particulas e Campos", Sao Lourenco, MG, Brazi