342 research outputs found

    Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

    Get PDF
    A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness

    Form factors in RQM approaches: constraints from space-time translations

    Full text link
    Different relativistic quantum mechanics approaches have recently been used to calculate properties of various systems, form factors in particular. It is known that predictions, which most often rely on a single-particle current approximation, can lead to predictions with a very large range. It was shown that accounting for constraints related to space-time translations could considerably reduce this range. It is shown here that predictions can be made identical for a large range of cases. These ones include the following approaches: instant form, front form, and "point-form" in arbitrary momentum configurations and a dispersion-relation approach which can be considered as the approach which the other ones should converge to. This important result supposes both an implementation of the above constraints and an appropriate single-particle-like current. The change of variables that allows one to establish the equivalence of the approaches is given. Some points are illustrated with numerical results for the ground state of a system consisting of scalar particles.Comment: 37 pages, 7 figures; further comments in ps 16 and 19; further references; modified presentation of some formulas; corrected misprint

    Distributions of flux vacua

    Get PDF
    We give results for the distribution and number of flux vacua of various types, supersymmetric and nonsupersymmetric, in IIb string theory compactified on Calabi-Yau manifolds. We compare this with related problems such as counting attractor points.Comment: 43 pages, 7 figures. v2: improved discussion of finding vacua with discrete flux, references adde

    Relativistic instant-form approach to the structure of two-body composite systems

    Full text link
    A new approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main novel feature of this approach is the new method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz-covariance of the current is ensured. In the electromagnetic case the current conservation law is ensured, too. The results of the calculations are unambiguous: they do not depend on the choice of the coordinate frame and on the choice of "good" components of the current as it takes place in the standard form of light--front dynamics. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for lepton decay constant of pion.Comment: 26 pages, Revtex, 5 figure

    Theoretical study of the absorption spectra of the sodium dimer

    Full text link
    Absorption of radiation from the sodium dimer molecular states correlating to Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum transitions from the singlet X Sigma-g+ state to the first excited singlet A Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the first excited triplet b Sigma-g+ and triplet c Pi-g states are studied quantum-mechanically. Theoretical and experimental data are used to characterize the molecular properties taking advantage of knowledge recently obtained from ab initio calculations, spectroscopy, and ultra-cold atom collision studies. The quantum-mechanical calculations are carried out for temperatures in the range from 500 to 3000 K and are compared with previous calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms

    RQM description of the charge form factor of the pion and its asymptotic behavior

    Full text link
    The pion charge and scalar form factors, F1(Q2)F_1(Q^2) and F0(Q2)F_0(Q^2), are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon-exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As it could be expected, those point-form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q+=0q^+=0) do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD-power-law behavior Q−2Q^{-2}. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F0(Q2)F_0(Q^2), is shown to have the right power-law behavior in any case. The low-Q2Q^2 behavior of the charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure

    The transition form factors for semi-leptonic weak decays of J/ψJ/\psi in QCD sum rules

    Full text link
    Within the Standard Model, we investigate the semi-leptonic weak decays of J/ψJ/\psi. The various form factors of J/ψJ/\psi transiting to a single charmed meson (D(d,s)(∗)D^{(*)}_{(d,s)}) are studied in the framework of the QCD sum rules. These form factors fully determine the rates of the weak semi-leptonic decays of J/ψJ/\psi and provide valuable information about the non-perturbative QCD effects. Our results indicate that the decay rate of the semi-leptonic weak decay mode J/ψ→Ds(∗)−+e++ÎœeJ/\psi \to D^{(*)-}_{s}+e^{+}+\nu_{e} is at order of 10−1010^{-10}.Comment: 28 pages, 6 figures, revised version to be published in Eur.Phys.J.
    • 

    corecore