8 research outputs found

    Adhesion-induced phase separation of multiple species of membrane junctions

    Full text link
    A theory is presented for the membrane junction separation induced by the adhesion between two biomimetic membranes that contain two different types of anchored junctions (receptor/ligand complexes). The analysis shows that several mechanisms contribute to the membrane junction separation. These mechanisms include (i) the height difference between type-1 and type-2 junctions is the main factor which drives the junction separation, (ii) when type-1 and type-2 junctions have different rigidities against stretch and compression, the ``softer'' junctions are the ``favored'' species, and the aggregation of the softer junction can occur, (iii) the elasticity of the membranes mediates a non-local interaction between the junctions, (iv) the thermally activated shape fluctuations of the membranes also contribute to the junction separation by inducing another non-local interaction between the junctions and renormalizing the binding energy of the junctions. The combined effect of these mechanisms is that when junction separation occurs, the system separates into two domains with different relative and total junction densities.Comment: 23 pages, 6 figure

    Dynamic phase separation of fluid membranes with rigid inclusions

    Full text link
    Membrane shape fluctuations induce attractive interactions between rigid inclusions. Previous analytical studies showed that the fluctuation-induced pair interactions are rather small compared to thermal energies, but also that multi-body interactions cannot be neglected. In this article, it is shown numerically that shape fluctuations indeed lead to the dynamic separation of the membrane into phases with different inclusion concentrations. The tendency of lateral phase separation strongly increases with the inclusion size. Large inclusions aggregate at very small inclusion concentrations and for relatively small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure

    Physical model for the gating mechanism of ionic channels

    Get PDF
    We propose a physical model for the gating mechanism of ionic channels. First, we investigate the fluctuation-mediated interactions between two proteins imbedded in a cellular membrane and find that the interaction depends on their orientational configuration as well as the distance between them. The orientational dependence of interactions arises from the fact that the noncircular cross-sectional shapes of individual proteins constrain fluctuations of the membrane differently according to their orientational configuration. Then, we apply these interactions to ionic channels composed of four, five, and six proteins. As the gating stimulus creates the changes in the structural shape of proteins composing ionic channels, the orientational configuration of the ionic channels changes due to the free energy minimization, and ionic channels are open or closed according to the conformation thereof.open3

    Two direct methods to calculate fluctuation forces between rigid objects embedded in fluid membranes

    No full text

    Predicting experimental quantities in protein folding kinetics using stochastic roadmap simulation

    No full text
    10.1007/11732990_34Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)3909 LNBI410-42

    Nonlinear Interactions of Light and Matter Without Absorption

    No full text
    corecore