7 research outputs found
Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures
Large RNA molecules often carry multiple functional domains whose spatial
arrangement is an important determinant of their function. Pre-mRNA splicing,
furthermore, relies on the spatial proximity of the splice junctions that can
be separated by very long introns. Similar effects appear in the processing of
RNA virus genomes. Albeit a crude measure, the distribution of spatial
distances in thermodynamic equilibrium therefore provides useful information on
the overall shape of the molecule can provide insights into the interplay of
its functional domains. Spatial distance can be approximated by the
graph-distance in RNA secondary structure. We show here that the equilibrium
distribution of graph-distances between arbitrary nucleotides can be computed
in polynomial time by means of dynamic programming. A naive implementation
would yield recursions with a very high time complexity of O(n^11). Although we
were able to reduce this to O(n^6) for many practical applications a further
reduction seems difficult. We conclude, therefore, that sampling approaches,
which are much easier to implement, are also theoretically favorable for most
real-life applications, in particular since these primarily concern long-range
interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Mesoscopic models for DNA stretching under force: new results and comparison to experiments
Single molecule experiments on B-DNA stretching have revealed one or two
structural transitions, when increasing the external force. They are
characterized by a sudden increase of DNA contour length and a decrease of the
bending rigidity. It has been proposed that the first transition, at forces of
60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA,
while the second one, at stronger forces, is a strand peeling resulting in
single stranded DNAs (ssDNA), similar to thermal denaturation. But due to
experimental conditions these two transitions can overlap, for instance for
poly(dA-dT). We derive analytical formula using a coupled discrete worm like
chain-Ising model. Our model takes into account bending rigidity, discreteness
of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit
of zero force, this model simplifies into a coupled model already developed by
us for studying thermal DNA melting, establishing a connexion with previous
fitting parameter values for denaturation profiles. We find that: (i) ssDNA is
fitted, using an analytical formula, over a nanoNewton range with only three
free parameters, the contour length, the bending modulus and the monomer size;
(ii) a surprisingly good fit on this force range is possible only by choosing a
monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase
length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss)
transitions; (iv) an analytical formula for fitting B to S transitions is
derived in the strong force approximation and for long DNAs, which is in
excellent agreement with exact transfer matrix calculations; (v) this formula
fits perfectly well poly(dG-dC) and -DNA force-extension curves with
consistent parameter values; (vi) a coherent picture, where S to ssDNA
transitions are much more sensitive to base-pair sequence than the B to S one,
emerges.Comment: 14 pages, 9 figure
Internal tension in a collapsed polymer under shear flow and the connection to enzymatic cleavage of von Willebrand factor
Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: Implications for DNA hybridization
Loops are essential secondary structure elements in folded DNA and RNA molecules and proliferate close to the melting transition. Using a theory for nucleic acid secondary structures that accounts for the logarithmic entropy —c ln m for a loop of length m, we study homopolymeric single-stranded nucleic acid chains under external force and varying temperature. In the thermodynamic limit of a long strand, the chain displays a phase transition between a low-temperature/low-force compact (folded) structure and a high-temperature/high-force molten (unfolded) structure. The influence of c on phase diagrams, critical exponents, melting, and force extension curves is derived analytically. For vanishing pulling force, only for the limited range of loop exponents 2 < c ≲ 2.479 a melting transition is possible; for c ≤ 2 the chain is always in the folded phase and for 2.479 ≲ c always in the unfolded phase. A force-induced melting transition with singular behavior is possible for all loop exponents c < 2.479 and can be observed experimentally by single-molecule force spectroscopy. These findings have implications for the hybridization or denaturation of double-stranded nucleic acids. The Poland-Scheraga model for nucleic acid duplex melting does not allow base pairing between nucleotides on the same strand in denatured regions of the double strand. If the sequence allows these intra-strand base pairs, we show that for a realistic loop exponent c ≈ 2.1 pronounced secondary structures appear inside the single strands. This leads to a lower melting temperature of the duplex than predicted by the Poland-Scheraga model. Further, these secondary structures renormalize the effective loop exponent , which characterizes the weight of a denatured region of the double strand, and thus affect universal aspects of the duplex melting transition
