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Abstract. By means of Brownian hydrodynamics simulations we show that the tension distribution along
the contour of a single collapsed polymer in shear flow is inhomogeneous and above a threshold shear rate
exhibits a double-peak structure when hydrodynamic interactions are taken into account. We argue that
the tension maxima close to the termini of the polymer chain reflect the presence of polymeric protrusions.
We establish the connection to shear-induced globule unfolding and determine the scaling behavior of
the maximal tensile forces and the average protrusion length as a function of shear rate, globule size,
and cohesive strength. A quasi-equilibrium theory is employed in order to describe the simulation results.
Our results are used to explain experimental data for the shear-sensitive enzymatic degradation of von
Willebrand factor.

1 Introduction

The study of the dynamics of polymers in solution has
become an important aspect for understanding non-equi-
librium processes in biopolymeric systems [1]. In the con-
text of blood coagulation, considerable research has been
focused on the multimeric glycoprotein von Willebrand
factor (VWF). The binding of VWF to exposed collagen
at sites of vascular injuries and the simultaneous VWF-
mediated adhesion of platelets are central steps in primary
hemostasis [2–4]. In this context, the presence of shear or
elongational flow constitutes a crucial ingredient as it ac-
tivates the functional conformation of VWF multimers by
inducing a transition from globular to unfolded conforma-
tions [5–7] and thus facilitates adhesion to the extracel-
lular matrix [8, 9]. Previous simulation studies elucidated
the dynamics and the VWF adsorption behavior [9, 10]
and revealed that VWF must exhibit finely adjusted, long-
lived bonds in order to resist hydrodynamic forces and to
allow for shear-induced adhesion [11, 12].

The existence of shear, apart from inducing conforma-
tional changes of the VWF multimers, can presumably
also influence VWF’s function by changing the tertiary
structure of individual monomers. In particular, it has
been argued that tensile forces lead to the unfolding of
individual domains [13, 14] and consequent exposure of
binding and cleavage sites that in equilibrium conditions
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or at low shear rates are not accessible, e.g. due to shield-
ing effects of VWF domains [15, 16].

Another shear-induced biological process in which
VWF takes part is the reversible platelet aggregation
under high shear rate [17–20] that has pathophysiologi-
cal relevance. In fact, malfunction in the VWF degrada-
tion and the resulting high amount of abnormally long
VWF multimers can lead to life-threatening thrombotic
diseases [21, 22]. The shear-dependent VWF degradation
thus presents an active area of research [23]. The required
regulatory mechanism is associated with the specific met-
alloprotease ADAMTS13, which is responsible for VWF
length regulation and thereby controls the hemostatic ac-
tivity [2, 24]. Note that the length distribution of VWF
in plasma has been determined recently using fluores-
cence correlation spectroscopy (FCS) [25]. The cleavage
site at which ADAMTS13 acts is deeply buried within the
VWF A2 domain in the native state [26]. There is general
consensus that VWF degradation requires shear or force-
induced A2 domain opening and exposure of the cleavage
site for ADAMTS13 [14, 27–29]. The force-induced activa-
tion of single A2 domains was recently studied using laser
tweezers [13]. In that study, cleavage of unfolded A2 do-
mains was observed and the dependence of the catalytic
rate on the enzyme concentration was determined. Details
about the underlying molecular mechanism were provided
by means of molecular dynamics simulations [14].

In the present study we address the interplay be-
tween shear-flow-induced VWF unfolding and the internal
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tensile force distribution along the polymer contour, the
opening of the mechanosensitive VWF A2 domain and
the activity of the cleavage enzyme ADAMTS13. We use
a coarse-grained VWF polymer model and employ Brown-
ian hydrodynamics simulations. In the first part, we show
that the shear-induced unfolding transition of a collapsed
globule, where elongated configurations are periodically
observed for short time intervals, can be connected to
an inhomogeneous profile of the average tension between
beads along the polymer chain. The unfolding has previ-
ously been explained by a nucleation model based on the
existence of thermally activated polymeric protrusions [5].
Here, we present a direct proof of the existence of such pro-
trusions and corroborate the protrusion-induced instabil-
ity mechanism leading to unfolding of collapsed polymers
in shear flow. We study the tension profile as a function
of shear rate, chain length, and cohesive strength. The
average maximal force (the peak force) along the chain
contour is identified as the typical force acting on a pro-
trusion. We determine scaling relations for the dependence
of the peak force and the average protrusion length on the
size of the globule and its cohesive strength. Using these
scaling predictions, we develop a quasi-equilibrium theory
to describe the average length of protrusions.

In the second part we show how the shear-induced ten-
sion profile along the polymer is connected to the physio-
logical process of shear-dependent proteolysis of VWF by
its specific cleavage enzyme ADAMTS13. We formulate a
simple stochastic two-state model for the VWF A2 domain
opening and calculate the force-dependent probability for
the domain to be accessible to cleavage by ADAMTS13
from the tension distribution along our coarse-grained
polymer model of VWF. The result can be connected to
the shear-dependent cleavage rate of full-length VWF me-
diated by ADAMTS13 that has been recently measured
experimentally by Lippok et al. [30]. In that study, flu-
orescence correlation spectroscopy (FCS) was employed
in combination with a microfluidic shear cell to quan-
tify the effect of shear on the kinetics of VWF cleavage
in aqueous buffer and in blood plasma by measuring the
time-dependent increase in VWF multimer concentration.
Our theoretical modeling allows to deduce characteristic
parameters of single cleavage sites like the effective force
scales of the stochastic opening and closing processes. We
compare our results with laser tweezer experiments [13]
on single A2 domains and argue that the domain open-
ing in shear flow might not be equivalent to the domain
unfolding probed by external stretching forces.

2 Simulation method

Brownian hydrodynamics simulations are performed using
the discretized Langevin equation

ri(t + Δt) − ri(t) =⎛
⎝μiiγ̇zix̂ −

N∑
j=1

μij ·∇rj
U({rN (t)})

⎞
⎠ Δt + ξi(Δt), (1)

which describes the displacement of bead i at position ri

after the time step Δt. Note that all quantities used are
made dimensionless by rescaling lengths r = r̃/a by the
bead radius a, energies U = Ũ/kT by thermal energy and
times t = t̃/τ by the characteristic diffusion time τ =
a2/μ0 kT = 6πηa3/kT, where η is the viscosity. The first
term in eq. (1) represents a linear shear flow with rate γ̇ =
˜̇γτ , where x̂ is the unit vector in x-direction. The second
term accounts for the direct force acting on particle i itself
as well as the hydrodynamic flow field created by forces
acting on all other particles j �= i. Hydrodynamic interac-
tions are taken into account via the mobility matrix ap-
proximated by the Rotne-Prager-Yamakawa tensor [31, 32]
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where rij = ri − rj and rij = |rij |; self-mobilities are
given by μii = μ̃ii/μ0 = 1. For free draining simulations
the off-diagonal elements of the mobility matrix eq. (2)
are set to zero. The stochastic contribution ξi is given by
Gaussian random vectors with correlations according to
the fluctuation-dissipation theorem 〈ξiξj〉 = 2μijΔt and
vanishing mean. The simulation typically runs for 108

time steps of length Δt = 5 × 10−4.
The homopolymer model consists of N beads, which

interact via Lennard-Jones potentials of depth ε = ε̃/kT
and are connected in a linear chain by stiff bonds with
a rescaled spring constant κ = κ̃a2/kT = 200; the total
potential reads

U = ε
∑
i<j

((2/rij)12−2(2/rij)6)+
κ

2

∑
i

(ri,i+1−2)2. (3)

In order to obtain a measure for the absolute value of the
tensile force fi ≡ 〈fi〉 = κ(〈ri,i+1〉 − 2) along the bond
between beads i and i + 1, the average distance 〈ri,i+1〉
is recorded during the course of simulation using block
averages in a time interval t = 0.05.

3 Results for tensile force profiles

We consider a collapsed polymer of length N = 50 hav-
ing fixed cohesive strength ε = 2, unless stated otherwise.
The influence of an applied shear flow on the size of the
globule is shown in fig. 1a. The squared radius of gyration
R2

g = N−1
∑

i(ri − rcom)2, with rcom = N−1
∑

i ri, mono-
tonically increases as a function of shear rate γ̇, where
we subtract (R0

g)
2 = R2

g(γ̇ = 0) = 11.3, the globule ra-
dius of gyration measured at vanishing shear γ̇ = 0. The
black line indicates a scaling relation R2

g − (R0
g)

2 ∼ γ̇2

for not too large shear rates γ̇ < 40. The conformational
change of a polymeric globule in shear flow has been in-
vestigated in previous studies [5, 6] reporting a quite sharp
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Fig. 1. a) Squared radius of gyration R2
g as a function of shear

rate γ̇ for cohesive strength ε = 2 and N = 50; hydrodynamic
interactions are included. The equilibrium value (R0

g)2 = 11.3
is subtracted. The solid line represents a power law with ex-
ponent 2. b) The rescaled variance of the squared extension
m(R2

S) displays a maximum at about γ̇∗ = 10 corresponding
to the critical shear rate of globule unfolding. The area shaded
in gray indicates where the force profiles in fig. 2a exhibit a
double-peak structure.

unfolding transition at a critical shear rate γ̇∗ at which
large size fluctuations are observed. In those studies, the
shear-induced unfolding transition is defined by the max-
imum of the rescaled variance of the squared extension
m(R2

S), displayed in fig. 1b. The extension RS is defined
as the maximal distance in flow direction between any
two beads from which the rescaled variance follows as
m(R2

S) = (〈R4
S〉 − 〈R2

S〉2)/〈R2
S〉2. We obtain for N = 50

and ε = 2 the critical shear rate γ̇∗ = 10, in agreement
with previous results [6] where it has been shown that the
critical shear rate depends on the chain length N . Note
that the squared radius of gyration exhibits similar fluc-
tuations and its variance could also be used to define the
unfolding transition.

We next investigate the tension profile along the con-
tour of a collapsed polymer subject to shear flow and
present results for the tensile force fi as a function of
bead position i in fig. 2a for a few different shear rates.
The polymer remains strongly collapsed for low shear rates
γ̇ < 5, as can be gathered from the small deviations in the
radius of gyration, fig. 1a, and the small extensional fluc-
tuations, fig. 1b. In such a globular conformation, as illus-
trated by the top snapshot in fig. 2e, tensile forces only
stem from thermal fluctuations and are rather small and
maximal at the termini. With increasing shear rate the
maximal tensile force shifts away from the chain termini
and a double-peak structure appears in the tensile force
profile, as seen in fig. 2a, a transition taking place around
γ̇ = 5. We define the transition to be at the shear rate
where the maxima move away from the chain termini. No-
tice that this is below the critical shear rate of unfolding,
γ̇∗ = 10, defined by the maximum variance of the exten-

sion, fig. 1b. The double-peak structure is also observed
for shear rates well above the unfolding transition, until
the force profile changes around γ̇ = 30 to a profile with a
flat maximum in the middle and with strongly decreasing
tension towards the termini. Fluctuations around the aver-
age forces fi are substantial, as indicated by the standard
deviation defined by σ2

i ≡ σ2(fi) = 〈f2
i 〉−〈fi〉2 and shown

for N = 50 and different shear rates in fig. 2b. Correspond-
ing broad normalized probability distributions P (f25) for
the middle bead i = 25 are shown in fig. 2c. Force pro-
files for different chain lengths are presented in fig. 2d for
a fixed shear rate γ̇ = 10. We observe the double-peak
structure only for long chains, N ≥ 20. The tension for
short chains at high shear are maximal in the middle and
resemble inverted parabolas.

We attribute the peaks in the tensile force profiles close
to the termini of the polymer to polymeric protrusions of
length lp, one of which is illustrated by the middle snap-
shot in fig. 2e. The reason for the existence of a force peak
is that the hydrodynamic drag force acting on a protrusion
is larger compared to beads within the globule, which is
due to hydrodynamic shielding effects. In addition, the oc-
currence of the double-peak structure in the force profiles
is closely related to the shear-induced unfolding transition
that has been rationalized by a nucleation theory based
on the presence of thermally excited polymeric protru-
sions [6]. The area shaded in gray in fig. 1 indicates the
range 4 < γ̇ < 30 where the double-peak structure in the
tensile force profile appears. In the same range the vari-
ance of the squared extension m(R2

S) displays a maximum,
fig. 1b, which is used to define the unfolding transition. In
fact, the unfolding transition leads to cyclic elongation,
illustrated by the bottom snapshot in fig. 2e, tumbling,
and refolding, causing a large variance of the average ex-
tension. As the double-peak structure is only observed for
long chains, N ≥ 20, as seen in fig. 2d, we conclude that
chains have to be long enough so that a globule can form
and the protrusion mechanism for unfolding becomes op-
erational.

3.1 Analysis

In order to analyze the double-peak structure of the ten-
sile force profiles figs. 2a,d in more detail, we define two
characteristic quantities. First, the peak tensile force fp,
defined as the maximal average tension along the chain,
which is associated with the average hydrodynamic drag
force acting on protrusions. Second, the average protru-
sion length lp, defined as the bead distance of the force
peak from the adjacent chain end. The definition of the
peak force fp and the protrusion length lp are illustrated
by arrows in fig. 2d for the right peak of the force profile
for N = 50. The length of a protrusion is also illustrated
by the middle snapshot in fig. 2e. Since the tension profiles
are symmetric with respect to the center of the polymer
chain we consider the mean of the two peaks in order to
determine fp and lp.
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Fig. 2. a) Average tensile force fi as a function of bead position i along a collapsed polymer with cohesive strength ε = 2
and N = 50. For increasing shear rate γ̇ the overall tension increases and the profile changes at about γ̇ = 5 from exhibiting
maximal tensile forces at the termini to a double-peak structure, which disappears for larger γ̇ ≥ 30. b) The standard deviation
σ(fi) as a function of i shown for different γ̇ indicates large fluctuations. c) This is reflected in the broad normalized probability
distribution P (f25) of the middle bead i = 25 (symbols) that can be well fitted with a Gaussian (lines). d) Tension profiles
for different chain length N for fixed shear rate γ̇ = 10. Black arrows illustrate the definition of the average protrusion length
lp and the peak force fp for N = 50. e) Snapshots of a collapsed globule, a globule having a protrusion of length lp, and an
elongated configuration (from top to bottom), all taken from simulations for ε = 2, N = 50 and γ̇ = 10.

3.1.1 Protrusion length and peak force at fixed cohesion
and globule size

In fig. 3 we present the average protrusion length lp and
the average peak tensile force fp as a function of shear
rate. As before, we consider a globule with cohesion ε = 2
and N = 50 beads. Hydrodynamic interactions (HI) are
either taken into account (black filled symbols) or are ne-
glected (FD, open symbols). In the FD case, no double-
peak structure is observed and with increasing shear rate
the position lp of the peak force abruptly changes from
the polymer termini to the middle. Note that this jump
occurs around the critical shear rate of unfolding, which
is at γ̇∗ = 1 for the FD case [6]. For the HI case, the area

shaded in gray in fig. 3 indicates the range 4 < γ̇ < 30
where the double-peak structure appears. The protrusion
length, fig. 3a, increases monotonically with shear rate ac-
cording to the heuristic scaling law lp ∼ γ̇1.2 until the pro-
file exhibits a single central peak at large shear rates. We
observe protrusion lengths in the range 1 < lp < 10. Note
that due to our discrete bead-spring model, we cannot de-
termine arbitrarily short protrusions. When there is no
protrusion and the maximal force is located at the chain
termini, the smallest value is defined to be lp = 1. The
data in fig. 3 is fitted only within the shaded area where
double peaks are observed. The maximal forces, shown in
fig. 3b, follow the scaling fp ∼ γ̇1.6 (black line) for large
shear rates. For comparison we also plot (gray discs) the
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Fig. 3. A globular polymer with N = 50 and ε = 2 exhibits
a double-peak structure only in the presence of hydrodynamic
interactions (HI, filled symbols), the corresponding range of
the shear rates γ̇ is shaded in gray. a) The mean protrusion
length lp as a function of γ̇. In the free draining case (FD,
open symbols) there is an abrupt jump around γ̇ = 1 from the
chain end to lp = 25 above which the maximal force is located
in the middle of the chain. In the HI case the protrusion length
increases according to lp ∼ γ̇1.2 (line) until there is only a single
middle peak at large shear rates. b) The peak force fp, defined
as the maximum average tension along the polymer contour,
scales as a function of shear rate like fp ∼ γ̇1.6, obtained by a
fit of the HI data (black line) within the shaded area. Also the
mean tension along the chain fmean (gray discs) is shown for
the HI case which exhibits a similar scaling fmean ∼ γ̇1.8 (gray
line).

mean tension along the chain, fmean = N−1
∑

i fi, for
varying shear rate, which shows a similar behavior as the
peak force, fmean ∼ γ̇1.8 (gray line).

3.1.2 Dependence on globule size and cohesive strength

The hydrodynamic drag force acting on a protrusion could
depend besides the protrusion length lp also on the glob-
ule radius R ∼ N1/3. In fact, the double-peak structure
strongly depends on the chain length N , as indicated by
the force profiles in fig. 2d. Another influential parame-
ter is the cohesive strength ε of the globule, which deter-
mines the restoring force on the protrusions. In the fol-
lowing we investigate the effect of different globule sizes
and varying cohesive strength. We focus on the HI case,
since no double-peak structure is observed in free draining
simulations.

Results for the peak forces fp and the mean forces
fmean as a function of N are plotted in fig.4a for fixed co-
hesive strength ε = 2 and shear rate γ̇ = 10. The peak
force only weakly depends on the globule size and de-
creases almost linearly with increasing chain length. The
mean tensile force along the chain decreases more strongly
with increasing N and can be described by a power law
fmean ∼ N−1/3 ∼ R−1, shown by the solid gray line.

Fig. 4. a) Peak forces fp, mean tension fmean, and b) protru-
sion length lp as a function of globule size N for fixed cohesive
strength ε = 2 and shear rate γ̇ = 10. Solid lines indicate a scal-
ing with the inverse radius of gyration f, lp ∼ N−1/3 ∼ R−1.
The peak force in a) decreases only weakly and rather linearly
with increasing globule size. The protrusion length in b) can
be described in terms of a quasi-equilibrium theory by eq. (8)
with fit parameters ζhyd = 2.2 × 10−4, ζcoh = 0.33 (dashed
line). c,d) Results for fixed globule size N = 50 and shear rate
γ̇ = 10 at varying cohesive strength ε. A double-peak struc-
ture is only observed for 0.7 < ε < 3 (shaded region) between
the collapse transition at low cohesion and the freezing transi-
tion at high cohesion where no protrusions are observable. The
tension in c) decreases approximately linearly with increasing
ε. The dashed line in d) is the theoretical result eq. (8) with
ζhyd = 3.7 × 10−4, ζcoh = 0.37. Fitting the function eq. (10)
yields the exponent α = 1.4 (solid line).

The average protrusion length lp, shown in fig.4b, also
decreases as the inverse of the radius lp ∼ N−1/3 ∼ R−1,
shown by the solid black line.

The dependence on the cohesive strength ε is shown in
fig. 4c,d. A double-peak structure in the tension profile is
only observed for values 0.7 < ε < 3. The lower boundary
is determined by the collapse transition that occurs for
N = 50 at εcol ≈ 0.66 [6], hence for lower values ε < εcol

the polymer is in a coiled state where maximal forces occur
in the chain middle. A higher cohesive strength ε ≈ 3 leads
to a compact, almost frozen globule which does not allow
for protrusions. Both the peak force as well as the mean
force decrease approximately linearly with increasing co-
hesive strength, as can be seen in fig. 4c. The protrusion
length shown in fig. 4d can be fitted within the shaded
area by a power law lp ∼ Δε−1/α (solid line), where we
introduce the energy difference Δε = ε − εcol and obtain
the exponent α = 1.4. Note that this scaling behavior can
be obtained by a quasi-equilibrium model and using the
assumption that the average protrusion length is indepen-
dent of the shear rate, as discussed in the next section.
This approach yields an estimate for the exponent α that
characterizes the restoring cohesive force on a protrusion
defined via eq. (6).
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Fig. 5. Schematic illustration of a tangential and a radial pro-
trusion of length l. The spherical globule with radius R is ro-
tating in shear flow with angular velocity ω = γ̇/2.

3.1.3 Quasi-equilibrium theory

A previous study [6] established the scaling behavior for
the hydrodynamic drag force and the restoring cohesive
force on a protrusion in order to estimate the critical
shear rate at which shear-induced globule unfolding sets
in. It was argued that when the two opposing forces bal-
ance, there is an instability and the globule can fully elon-
gate since no energy barrier prevents the protrusion to be
dragged out from the globule. For a collapsed globule the
unfolding time is presumably much larger than the inverse
shear rate, i.e. the period of globule rotation. As a conse-
quence, most protrusions are short-lived and are wrapped
around the globule by the constant rotation rather than
leading to full elongation of the polymer. Therefore a nu-
cleation model is well suited to make scaling predictions
for the transition from the collapsed to an unfolded state
which is much slower compared to the fast shear-induced
refolding. This might be the reason why protrusions are
absent in the FD case, where hydrodynamic shear freely
penetrates the globule and little resistance against shear-
induced deformations leads to fast unfolding at relatively
low shear rates.

In contrast to these nucleation-type arguments, here
we make use of the scaling behavior of drag force and co-
hesive force and apply a quasi-equilibrium theory in order
to estimate average values for the protrusion length lp and
the tensile force fp. Our quasi-equilibrium theory does not
describe the rare events of full unfolding around the crit-
ical shear rate but yields information about the average
protrusions which can be compared to our tensile force
profiles. As schematically depicted in fig. 5, we consider a
polymer segment of length l protruding from a collapsed
spherical globule with radius R, which is rotating in shear
flow with angular velocity ω = γ̇/2. In principle we would
have to take into account all possible configurations of pro-
trusions, however, we focus on the cases where the largest
drag force occurs. Two typical cases are shown in fig. 5:
for a tangential protrusion the drag force is maximal at
the top of the globule (left), while the force on a radial
protrusion is maximal at an angular position of π/4 with
respect to the flow direction (right) [6].

In the presence of hydrodynamic interactions, the drag
force results from an integral along the protrusion contour,
fhyd =

∫ l

0
(v − v0)dl, for this we use the analytical flow

profile around a sphere in linear shear [33],

vβ = γ̇zδβx +
γ̇R

2

(
5(1 − (r/R)2)βxz

R3(r/R)7
− δβzx + δβxz

R(r/R)5

)
,

(4)
with β ∈ {x, y, z}. We define the reference velocity v0

at the surface of the globule from where the protrusion
emerges. Expansion for short length l < R of the velocity
profile eq. (4) leads to a radial velocity v ∼ γ̇l2/R [6] and
hence to

fhyd ∼ γ̇l3/R. (5)

Using the tangential configuration of the protrusion only
changes the prefactor but leaves the scaling behavior un-
changed.

The restoring cohesive force is assumed to scale as

fcoh ∼ −Δε lα−1, (6)

where Δε = ε − εcol is the cohesive strength relative to
the cohesion at the collapse transition. The linear behav-
ior of the force with respect to the cohesive strength Δε
is indeed reflected in our simulation data, as shown in
fig. 4c. The parameter value α = 1 describes protrusions
much longer than the globule-solvent interfacial width and
which experience a constant cohesive force that does not
depend on the length l. For short protrusions the harmonic
approximation is expected, α = 2 [6].

In order to calculate the average protrusion length lp,
we construct the energy expression for a protrusion

Utot = Uhyd + Ucoh = −ζhyd γ̇l4/R + ζcoh Δεlα, (7)

where the potential of mean force associated with the co-
hesion is determined by ∂Ucoh/∂l = −fcoh and the con-
tribution that pulls the protrusion out of the globule is
given by ∂Uhyd/∂l = −fhyd. The prefactors ζhyd and ζcoh

are used to fit the data. We next assume that the pro-
trusion configuration relaxes relatively quickly and can be
described by a quasi-equilibrium Boltzmann distribution.
Numerical evaluation of the Boltzmann average yields the
average protrusion length

lp =

∫ lmax

0
e−Utot(l) l dl∫ lmax

0
e−Utot(l)dl

, (8)

where the integration boundary lmax, the maximal pro-
trusion length, is a further parameter that is used to fit
the simulation data. Similarly, an estimate for the average
peak force is given by

fp =

∫ lmax

0
e−Utot(l)

∣∣∂Utot
∂l

∣∣ dl∫ lmax

0
e−Utot(l) dl

. (9)

In the limit of vanishing shear rate or large globules, or
under the assumption that the average protrusion length
is independent of the shear rate, we can neglect the first
term in eq. (7) and calculate the average protrusion length
via eq. (8) for lmax → ∞, which yields

lp ∼ Δε−1/α. (10)
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Fig. 6. a) Average protrusion length lp and b) peak force fp

as a function of shear rate for simulations with HI, N = 50
and ε = 2. Lines in a) represent theoretical results eq. (8) with
exponent α = 1 (dashed line), α = 2 (dotted line) and fitting
parameters ζhyd and ζcoh (values in the legend). Lines in b)
correspond to eq. (9) using the same parameters as in a). The
shaded area indicates where double peaks in the tension profile
are observed.

The dashed lines in fig. 4b and fig. 4d represent the re-
sult eq. (8) for the protrusion length as function of chain
length N and as a function of the cohesive strength ε, re-
spectively. We use the known parameter values R = R0

g =√
11.3 for N = 50, Δε = ε − εcol = 1.34 for ε = 2,

and assume long protrusions characterized by α = 1,
lmax = 9, which is an estimate deduced from fig. 3a.
Note that we neglect the dependence of the collapse tran-
sition on the chain length and use a constant εcol. Sat-
isfactory agreement is obtained between the theoretical
result and the simulation data by adjusting the fit pa-
rameters ζhyd = 2.2 × 10−4 and ζcoh = 0.33 for fig. 4b
and ζhyd = 3.7 × 10−4 and ζcoh = 0.37 for fig. 4d. The
differences in the fitting factors might be due to the sim-
plifying assumption that the maximal protrusion length
lmax as well as εcol are kept constant.

We also compare the prediction of the quasi-equilibri-
um theory for the average protrusion length lp, eq. (8),
as a function of shear rate in fig. 6a for the same data
as shown in fig. 3a. The result for α = 1 is shown as a
dashed curve and for α = 2 as a dotted line. It can be
seen that the simple theory does not describe the sim-
ulation data very accurately in the transition region. In
fig. 6b we compare the peak force measured in simula-
tions with the theoretical prediction, eq. (9), using the
same fit parameters ζhyd and ζcoh as obtained from fig. 6a.
Since the analytical prediction largely underestimates the
simulation data we conclude that the simple combination
of Boltzmann averaged length lp and peak force fp does
not yield a consistent description of average protrusions. A
somewhat better result is obtained for a small value α = 1,
which is in contradiction to the result of ref. [6] where the
scaling behavior of the critical shear rate suggests α = 2

for the HI case and hence short protrusions. We conclude
that the quasi-equilibrium theory would have to be ex-
tended in order to consistently capture all properties of
shear-induced protrusions.

An interesting question concerns the actual value of
the exponent α characterizing the cohesive force on a pro-
trusion defined in eq. (6). The scaling relation eq. (10)
shown for fixed shear rate and globule size in fig. 4d as
a solid line was not only introduced as a phenomenolog-
ical power law, but it is also obtained when calculating
the average protrusion length eq. (8) and neglecting the
first term of eq. (7). Despite this simplistic assumption
(note that both shear rate, shown in fig. 3a, and glob-
ule size, shown in fig. 4b, influence the average protrusion
length) we can estimate the parameter α = 1.4. This corre-
sponds to an intermediate value between long protrusions
and constant cohesive force, α = 1, and short protrusions,
α = 2.

In conclusion, the quasi-equilibrium theory contains
sufficient fit parameters in order to roughly match simula-
tions results for the average protrusion length. This might
be surprising as the time scale governing the transition
between collapsed and unfolded state is large compared
to the shortest relevant time scale in the system, which
is the period of globule rotation, and thus rare events of
full polymer elongations are presumably not accurately
described by our quasi-equilibrium model. In line with
this, the Boltzmann averaging of both lp and fp with the
same fit parameters does not yield a consistent descrip-
tion of the average protrusion force measured in the sim-
ulation. In order to improve the accuracy of our model we
used the full velocity profile, eq. (4), for the calculation of
the energy term Uhyd associated with the hydrodynamic
drag on the protrusion instead of the approximation for
short protrusions in eq. (5), but found no qualitative dif-
ference, only the prefactor ζhyd changes (data not shown).
A further possible improvement of the theory might be to
average over all possible protrusion configurations or to
consider a maximal cut-off length lmax that depends on
globule size, cohesive strength, and shear rate.

4 Connection between tension profile and
VWF proteolysis

The tension profiles that we investigated in the previ-
ous section can help to explain the shear-induced acti-
vation of collapsed biopolymers from a fundamental poly-
mer physics point of view. In particular, in this section
we make the connection between the shear-induced ten-
sion along a polymer chain and the shear-dependent pro-
teolytic degradation of the multimeric blood protein von
Willebrand factor (VWF) by its specific cleavage enzyme
ADAMTS13. The ADAMTS13-mediated cleavage of full-
length VWF in shear has been measured recently [30] us-
ing fluorescence correlation spectroscopy (FCS) in combi-
nation with a microfluidic shear cell. The effect of shear
on the kinetics of VWF cleavage in aqueous buffer and
in blood plasma was quantified by measuring the time-
resolved increase in molar VWF multimer concentration.
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One of the main results of that study was a strong sig-
moidal increase of ADAMTS13 activity in plasma as a
function of shear rate.

As has been shown previously, external forces induce
an opening of the VWF A2 domain which thereby be-
comes accessible for cleavage by ADAMTS13 [14, 28]. In
order to describe the opening process of the A2 domain
required for cleavage by ADAMTS13, we employ a sim-
ple two-state model where a single subunit is either closed
or open. The kinetics is described by the force-dependent
opening and closing rates that determine the probability
for the cleavage site to be in the open state, which in turn
can be related to the shear-dependent cleavage rate mea-
sured in the experiment [30]. This allows to deduce pa-
rameters characterizing the process of stochastic domain
opening and closing such as an effective force scale and the
free energy difference from experimental shear-dependent
measurements.

4.1 Morrison kinetics without shear flow

In the absence of shear flow, previous experiments mea-
sured the ADAMTS13-mediated cleavage of VWF under
denaturing buffer conditions [30]. In order to observe a fi-
nite cleavage activity without shear flow, the denaturant
is essential to render cleavage sites accessible. The results
are shown in fig. 7, where the cleavage rate increases with
VWF multimer concentration CV depending on the en-
zyme concentration CA. In the context of enzyme kinet-
ics, the cleavage rate can be described by the Morrison
equation [34],

kCR =
dCV

dt
=

k̃cat

2

(
KM + CA + N̄openCV

−
√(

KM + CA + N̄openCV

)2 − 4CA N̄openCV

)
,

(11)

with the catalytic rate constant k̃cat and the Michaelis-
Menten constant KM . The central assumption is that the
cleavage rate depends on the mean number of accessible
cleavage sites per VWF multimer, N̄open, via the effective
substrate concentration N̄openCV . Equation (11) is a gen-
eralized Michaelis-Menten equation without the free lig-
and approximation, i.e., it is valid for KM values smaller
than CA and does not assume the free substrate concen-
tration to be equal to the total substrate concentration,
an approximation that might not be valid when accessi-
ble cleavage sites are sparse. Solid lines in fig. 7 represent
global fits of the experimental data to eq. (11) with pa-
rameters k̃cat = 0.001 s−1, KM = 2.3 nM, and the num-
ber of accessible cleavage sites N̄open = 0.04. This means
that the denaturing buffer only opens a small fraction of
the cleavage sites per multimer. Our results suggest do-
main opening to be the cleavage rate limiting factor rather
than the ADAMTS13 concentration, since the KM is be-
low the physiological value of the ADAMTS13 concentra-
tion, which is about CA ≈ 5 nM [30].

Fig. 7. Experimental data from [30] for the cleavage rate
in denaturing buffer as a function of VWF multimer con-
centration CV for two different ADAMTS13 concentrations
CA = 5.3 nM (black) and CA = 53 nM (grey). Lines illustrate
Morrison kinetics eq. (11) with fit parameters k̃cat = 0.001 s−1,
KM = 2.3 nM, and N̄open = 0.04.

The Michaelis-Menten constant of KM = 962 nM de-
termined previously [30] results from the alternative as-
sumption that all cleavage sites are accessible under de-
naturing conditions, i.e. N̄open = Nm, where the average
number of monomers is obtained by the experimentally
determined VWF length distribution [25]

Nm = 2
∑∞

N=1 N nN−1

∑
N nN−1

= 5.6, (12)

with the parameter n = 0.64. Note that there are two
cleavage sites per dimer (bead). Here, we present the al-
ternative approach of introducing the mean number of
accessible cleavage sites N̄open as a fit parameter, which
allows the consistent description of shear-dependent ex-
periments, as explained in sect. 4.3. The simultaneous fit
of the two different enzyme concentrations in fig. 7 with
the same k̃cat = 0.001 s−1 is an advantage compared to
the method used previously [30], where the catalytic rate
constant depends on CA. More experimental data for dif-
ferent enzyme concentrations would be needed in order to
consolidate the present fitting approach.

4.2 Model for stochastic cleavage site opening under
tensile forces

In our homopolymer model, a spherical bead of radius a
represents the VWF’s repeating unit, i.e. a dimer. Since
rescaled shear rates γ̇ = ˜̇γτ are used with a timescale
τ = 6πηa3/kT, simulation results can be interpreted in
terms of arbitrary values of radius and viscosity. In order
to compare the dimensionless simulation values to physical
units, we use the viscosity η = 1.2 × 10−3 Pa s, and tem-
perature T = 310K. The remaining parameters are the
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bead radius a and the cohesive strength ε, which strongly
influence the critical shear rate at which shear-induced
unfolding of the polymeric globule sets in [6]. We choose
the cohesive parameter ε = 2 so that in the absence of
shear flow the polymer is collapsed but still far from the
freezing transition at around εfreeze = 4 [35]. The dimen-
sionless critical shear rate that we determine for a globule
with N = 50 is about γ̇∗ = 10 (fig. 1b), which translates
to the experimental value ˜̇γ∗

exp ≈ 5000 s−1 [9] when using
the bead radius a = 73nm. This compares well with lit-
erature values of the VWF dimer size ranging from 60 nm
to 82 nm [36–38]. Note that the critical shear rate also de-
pends on the bead number [6], however, here for simplicity
we consider a system with N = 50 beads.

From simulations we obtain the average tension fi be-
tween adjacent beads (figs. 2a,d) and calculate the prob-
ability for a cleavage site to be open, given by

Pi =
1

1 + eΔF e−fi/fe
. (13)

This expression can be derived by considering the re-
versible reaction of the cleavage site from being in the
closed state to the open state, which we assume to be
separated by a transition state energy barrier. The corre-
sponding rate equation for the time-dependent probability
to be in the open state Pi is given by

dPi/dt = ko(1 − Pi) − kcPi. (14)

Whereas the opening rate ko = k0
o exp (fi/fo) increases

exponentially with tension according to the character-
istic opening force scale fo, the closing rate kc =
k0

c exp(−fi/fc) is assumed to decrease with tension ac-
cording to the closing force scale fc (which in general is
different from fo). Opening and closing rates in the ab-
sence of force are defined by k0

o and k0
c . In a stationary

state, the time derivative of Pi vanishes and we obtain
eq. (13), where the effective force scale is defined by

fe = 1/(1/fo + 1/fc) (15)

and the unstressed equilibrium constant k0
o/k0

c = exp
(ΔF ) defines the free energy difference ΔF between open
and closed state. Compared to the length xo = kT/fo,
which is the distance along the reaction coordinate from
the closed state to the transition state, the distance xc =
kT/fc between transition state and fully open state, e.g.
the unfolded A2 domain stretched to its contour length, is
presumably much larger and thus fc � fo. Consequently,
from eq. (15) we conclude that the force scale of the closing
transition dominates the effective force scale fe ≈ fc � fo.

Considering the entire polymer, we define the mean
number of accessible cleavages sites as

Nopen(N) = 2
N∑
i

Pi, (16)

where the prefactor accounts for the fact that every dimer
exhibits two cleavage sites. The cleavage process consists

of three steps: the opening of the cleavage site, diffusion
of the enzyme to this active site, and the actual catalytic
cleavage. Our underlying assumption is that the domain
opening and not diffusion or the chemical reaction is the
rate limiting mechanism for the cleavage process. We thus
assume that when there is an open cleavage site, the prob-
ability being described by eq. (13), the diffusion rate as
well as the reaction rate are large enough such that VWF
is readily cleaved.

In order to obtain the size-averaged number of open
cleavage sites, the weighted arithmetic mean is calculated

N̄open =
∑Nmax

N nN−1Nopen(N)∑Nmax
N nN−1

(17)

according to an exponential VWF size distribution with
the parameter n = 0.64, which was determined by
fluorescence correlation spectroscopy of VWF in blood
plasma [25]. Simulation results are used to calculate
Nopen(N) and the upper boundary in the sums of eq. (17)
is set to a maximal chain length Nmax = 10. Taking into
account longer chains does not alter the result due to the
negligible weights for large N in eq. (17).

4.3 Mapping simulation results and experiments of
shear-induced VWF cleavage

Experimental cleavage rates of VWF in blood plasma [30]
as a function of shear rate, shown in fig. 8a as black sym-
bols, exhibit a steep increase corroborating the concept of
shear-induced opening of the A2 cleavage domain.

The experimental data can be described by a phe-
nomenological sigmoidal function

kCR = kmax
1

1 + e−(˜̇γ−˜̇γc)/Δ˜̇γ
, (18)

illustrated as a black line in fig 8a, with fitting parame-
ters Δ˜̇γ = 1271 s−1 and ˜̇γc = 5522 s−1, the latter being
interpreted as the half maximum shear rate. The enzyme
activity dependent prefactor kmax = 0.0035 nM/s denotes
the maximal enzymatic rate in the case of fully acces-
sible cleavage sites. Notice that high cleavage activity is
closely related to the shear-induced VWF unfolding tran-
sition since the half maximum shear rate ˜̇γc agrees with
the critical shear rate of unfolding, ˜̇γ∗

exp ≈ 5000 s−1 [9],
where the polymer size fluctuations are maximal.

The connection to simulation results is established
using the Morrison eq. (11) in combination with the
shear-dependent mean number of accessible cleavage sites,
eq. (17) with eqs. (13) and (16). The tensile force profiles
fi are taken from our simulations in the previous sect. 3
and we use the Michaelis-Menten constant KM = 2.3 nM
determined in sect. 4.1 under denaturing buffer condi-
tions since we expect that value not to be very different
in blood plasma. The ADAMTS13 concentration in the
blood plasma was CA = 1.3 nM and the VWF concentra-
tion CV = 13nM [30]. As a result of a least square fit, as
seen in fig. 8a, simulations results (cyan symbols) match
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a)

b)

Fig. 8. a) Experimental data for the cleavage rate of VWF
in blood plasma (black symbols, data from [30]) as a function
of shear rate is described by the phenomenological sigmoidal
function, eq. (18), as a solid line. Assuming a stochastic model
for the description of the probability of a subunit to be open,
eq. (13), and the mean number of open cleavage sites N̄open to
determine the substrate concentration in the Morrison eq. (11),
agreement with simulation data (cyan symbols) is obtained for
fitting parameter values ΔF̃ = 8.5 kT, f̃e = 0.06 pN, and a
catalytic rate constant k̃cat = 0.0027 s−1. b) Simulation re-
sults for the mean number of open cleavage sites, eq. (16), as a
function of shear rate for a few different chain lengths N . The
size-averaged number N̄open according to eq. (17) is denoted by
cyan symbols. Lines are fits to a sigmoidal function according
to eq. (18).

the sigmoidal description (solid line) of the experimental
data. We obtain the fit parameters ΔF = 8.5 in units of
kT and fe = 1.0 in rescaled units characterizing the prob-
ability of single cleavage sites to be accessible, eq. (13), as
well as the catalytic rate constant k̃cat = 0.0027 s−1, which
is in satisfactory agreement with the 0.001 s−1 obtained in
the absence of shear flow, fig. 7. The force scale in physical
units is given by f̃e = fekT/a = 0.06 pN. Notice that the
length scale x̃c ≈ x̃e = kT/f̃e = 69nm associated with the
distance along the reaction coordinate between the open
state and the transition state is comparable to the contour
length of the A2 domain of 58 nm [13].

The dependence of the mean number of accessible
cleavage sites on the chain length N is illustrated in fig. 8b.
For a few different lengths we plot Nopen as a function
of the shear rate, using the parameters obtained before:
ΔF = 8.5 and fe = 1.0. Lines represent sigmoidal fits ac-
cording to eq. (18). The saturating value is proportional
to the monomer number and with increasing N the tran-
sition shifts towards lower values of the shear rate indi-
cating that the probability to find open cleavage sites is
higher for longer polymers. We also plot the size-averaged
number according to eq. (17) denoted by cyan symbols.

4.4 Alternative models for mean number of accessible
cleavage sites

4.4.1 Alternative model I

In this section, we present an alternative definition of the
mean number of open cleavage sites N̄open, eq. (17), that
determines the shear-dependence of the Morrison eq. (11).
We employ an analytical approach to calculate the prob-
ability of cleavage sites to be open based on our scal-
ing results from sect. 3.1.1. While the model eq. (13) in-
cludes simulation results directly via the measured average
forces, fi, along the polymer chains, here we consider the
mean force, fi ≈ fmean, which depends on the shear rate
according to fmean ∼ γ̇1.8, as seen in fig. 3b. We thus as-
sume equal probability for any cleavage site to be open
and obtain for the mean number of open cleavage sites

N̄open = Nm
1

1 + eΔF e−(˜̇γ/˜̇γe)1.8
, (19)

where the average number of monomers is given by
eq. (12). Following the same fitting procedure as before,
we obtain the fit parameters ΔF = 4.9, ˜̇γe = 3322 s−1,
and k̃cat = 0.0028 s−1 and plot the result in fig. 9 as a red
dashed line. The analytical approach using a power law for
the shear-dependence of the mean tensile forces yields a
suitable description of the experimentally observed cleav-
age rate. Compared to the result from sect. 4.3, the cat-
alytic rates agree very well but the free energy difference
is smaller by 3.6 kT. We conclude that based on the qual-
ity of fits in fig. 9 it is not possible to decide whether the
assumption underlying eq. (17) or eq. (19) is valid. This
means that it remains unclear to what extent the inho-
mogeneous force profiles as shown in fig. 2 influence the
cleavage process of VWF multimers. It therefore might be
possible that cleavage occurs predominantly at the sites
of maximal tensile forces along the multimer contour.

4.4.2 Alternative model II

Another method to model the fraction of accessible cleav-
age sites and thereby the cleavage rate is based on the
observation of broad distributions of the tensile forces,
shown in fig. 2c. These are well fitted by a Gaussian,

Gi(f) = exp
(
−(f − fi)2/(2σ2

i )
) /√

2πσ2
i . (20)
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Fig. 9. Alternative models describing experimental cleavage
rates in blood plasma (black symbols) as a function of shear
rate. The black solid line represents the phenomenological sig-
moidal function, eq. (18). The analytical model using the mean
number of open cleavage sites, eq. (19), and the fit of eq. (11)
(red dashed line) yields a very similar result for the cleavage
rate. Instead of using the average forces fi for the calculation
of the probability Pi, eq. (13), for the blue symbols we use
the average of Pi, eq. (21), which takes into account the full
distribution of tensile forces.

The resulting mean force fi and standard deviation σi can
be used to calculate the average probability of the cleavage
site to be open

P̂i =
∫ ∞

−∞
Gi(f)

1
1 + eΔF e−f/fe

df. (21)

In contrast to eq. (13), where only the average forces fi

are used to calculate the probability of an open cleav-
age site, eq. (21) takes into account the full distribution
of tensile forces. The result of the fit of eq. (11) using
Nopen(N) = 2

∑N
i P̂i and eq. (17) is shown in fig. 9 by

blue squares with fit parameters ΔF = 12.5, fe = 1.67 and
k̃cat = 0.0029 s−1. Although this method leads to an ade-
quate graphical description of the cleavage rate, the result-
ing fit parameters should be interpreted with care since a
wide range of values for ΔF and fe lead to fits of compa-
rable quality. The large free energy difference ΔF = 12.5
between the open and the closed state might suggest that
when using the full tension distribution one overestimates
the influence of the force on the probability to find open
cleavage sites. In conclusion, it remains unclear to what
extent the strong fluctuations of the tensile force, which
are due to the rare events of full polymer unfolding, con-
tribute to the cleavage domain opening that determines
the shear-induced cleavage process.

4.5 Comparison to VWF A2 domain unfolding upon
external stretching force

In the following we make the connection to the force-
induced unfolding of the isolated A2 domain measured

with optical tweezers [13], where it is hypothesized that
unfolding of A2 is required for cleavage by ADAMTS13.
In that study, unfolding forces are measured as a function
of force loading rates. In line with our assumption, the
unfolding rate ku = k0

u exp(f/fu) is assumed to increase
exponentially with applied force f , and the characteristic
force scale fu of A2 unfolding is determined. Note that
the unfolding of A2 probed in the force spectroscopy ex-
periments is not necessarily the same process as probed in
the ADAMTS13 cleavage experiments in shear, as we will
explain in the following.

In our analysis in sect. 4.2 we identify the closing force
scale fc to be the dominating factor governing the force
dependence of the probability Pi of cleavage sites to be
accessible. In other words, the characteristic force scale of
opening, fo, is not directly accessible in our model as we
only determine the effective force scale fe ≈ fc � fo. This
is one reason why the effective force scale fe = 0.06 pN
characterizing the sigmoidal behavior of Pi in shear flow
is very different compared to the force scale for unfolding
induced by an external stretching force fu = 1.1 pN [13].
The other reason why the force scales are different could be
that cleavage by ADAMTS13 does not require the full un-
folding of the A2 domain. Only if the unfolding of the A2
domain would be a necessary step before ADAMTS13 can
access the cleavage site, and only if the process of force-
induced A2 unfolding was equivalent to the shear-induced
opening of the ADAMTS13 cleavage site in VWF, would
fu correspond to the opening force scale fo. Based on our
approach modeling the shear-induced cleavage of VWF,
that is close to the physiological situation, one might spec-
ulate that the process of force-induced A2 unfolding is
fundamentally different. This is in line with literature re-
sults [13, 14] that suggest an partially unfolded, intermedi-
ate state of the A2 domain to be sufficient for ADAMTS13
cleavage. There are further conceivable mechanisms of how
forces might induce increased cleavage activity in VWF.
Interactions of multiple domains could, for instance, shield
the cleavage site in the absence of force; only upon ap-
plied forces domains might separate and thereby enable
cleavage.

Zhang et al. [13] also determined the rate of A2 re-
folding, employing a model where the refolding rate is de-
scribed by kf ∼ exp(−f2/(2κ kT)). That model assumes
soft compliance of the unfolded state described by a har-
monic potential Uharm = −f2/2κ = κR2

ee/2, where κ de-
notes the effective spring constants that characterizes the
polymer elasticity and Ree is the polymer end-to-end dis-
tance. Due to the different modeling for the closing rate,
we can only compare the rates in the absence of force and
thus the equilibrium constant, or equivalently the free en-
ergy difference between the two states. As a result, we
obtain from our fit an estimate for the energy difference
ΔF̃ = 8.5 kT, which is higher by about 2 kT compared
to the single barrier A2 unfolding and refolding kinetic
model [13]. Although we would have expected a smaller
free energy difference since shear presumably only par-
tially unfolds the A2 domain, this difference is not sur-
prising given the different model assumptions that go into
the analysis of the experimental data. In terms of enzyme
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activity, Zhang et al. determined a catalytic rate constant
of k̃cat = 0.14 s−1 for single, accessible A2 domains and
varying enzyme concentration [13]. The cleavage of A2
fragments in the absence of shear-induced unfolding is
presumably a less physiological situation. Since we consid-
ered shear-induced cleavage of full-length VWF in blood
plasma the substantially smaller rate constant that we ob-
tained, k̃cat = 0.0027 s−1, might not be surprising.

5 Summary and conclusion

In the present study we investigate the tension profile of
collapsed homopolymers in shear flow by Brownian hydro-
dynamics simulations. Profiles for long polymers exhibit
a characteristic double-peak structure that we argue is
related to polymeric protrusions and forms the basis of
a nucleation argument used in previous work to explain
the instability mechanism behind shear-induced unfold-
ing [5, 6]. The range of shear rates where the double-peak
structure in the tension profiles occurs roughly coincides
with the peak of the variance of the chain extension, which
was previously used to define the critical shear rate of un-
folding. By heuristic fits of the simulation results, we find
scaling relations fp ∼ γ̇1.6 and lp ∼ γ̇1.2 for the peak
force and the average protrusion length, respectively. Av-
erage protrusions lengths are in the range 1 < lp < 10.
For fixed shear rate, the protrusion length decreases with
increasing globule size according to lp ∼ R−1. In terms
of the cohesive strength, protrusions occur for collapsed
globules ε > εcol and for fixed shear rate the protrusion
length decreases roughly linearly with ε until the glob-
ule undergoes a freezing transition and protrusions disap-
pear at about ε ≈ 3. The peak force decreases roughly
linearly both as a function of globule size and cohesive
strength.

A quasi-equilibrium theory with a few fit parameters
describes the behavior of the average protrusion length
only in parts. This might be due to the fact that the tran-
sition between collapsed and unfolded state is slow com-
pared to the shortest relevant time scale in the system,
which is the period of globule rotation. Rare events of full
polymer elongations are thus not accurately described by
a quasi-equilibrium model. On the other hand, the pre-
viously established nucleation model can be successfully
used to predict the critical shear rate at which unfolding
sets in [5]. Since we do not observe a double-peak structure
in the free draining case, we conclude that the protrusion
mechanism for unfolding only applies to the case when
hydrodynamic interactions are taken into account. This
is an interesting observation in comparison with previous
scaling arguments [5].

In the second part we consider experiments of
ADAMTS13-mediated VWF cleavage. First we analyze
the Morrison kinetics of the cleavage process without shear
flow in denaturing buffer and obtain a Michaelis-Menten
constant KM = 2.3 nM and the catalytic rate constant
k̃cat = 0.001 s−1. Under such denaturing conditions, we
find that only a small average number of cleavage sites

N̄open = 0.04 is accessible per multimer. Our results
suggest domain opening to be the cleavage rate limiting
factor rather than the ADAMTS13 concentration. Next
we connect the simulated tension profile, via a stochas-
tic two state model for the cleavage domain opening of
each monomer, to the experimentally measured shear-
dependent cleavage rate of VWF in blood plasma. Due
to the occurrence of protrusions one can speculate that
ADAMTS13 is likely to cut VWF multimers towards the
terminal ends, which are pulled out of the globules and
therefore are most accessible. Our model qualitatively de-
scribes the sigmoidal increase of the cleavage rate with
increasing shear rate and we obtain as a main result the
parameters characterizing the probability of an individ-
ual cleavage domain to be accessible, i.e., the effective
force scale f̃e = 0.06 pN and the free energy difference
between open and closed state ΔF̃ = 8.5 kT. Further-
more, the catalytic rate constant of the cleavage process
is found to be k̃cat = 0.0027 s−1, in satisfactory agreement
with k̃cat = 0.001 s−1 obtained for cleavage in denaturing
buffer.

The present study further elucidates the complex dy-
namical behavior of collapsed polymers in shear as the
basis for non-equilibrium phenomena with high physio-
logical relevance. The shear-induced VWF unfolding leads
to inhomogeneous tensile force distributions and thereby
strongly influences the susceptibility to proteolytic cleav-
age. Our findings are not limited to VWF’s hemostatic
function but are relevant for a number of nanotech-
nological and biomedical applications where functional
polymers or proteins are engineered as shear-responsive
smart materials or drug delivery systems. Future lines
of work might involve further components that modulate
the cleavage of VWF in blood plasma. It has been shown
that the presence of coagulation factor VIII [39] as well as
platelets [40] increases the susceptibility of VWF to cleav-
age by ADAMTS13. Including additional particles in the
simulation model could yield valuable insight into the in-
terplay of cofactors that bind to the polymeric monomers,
conformational changes and the tension profile that in
turn affects the cleavage activity. In fact, simulations of
VWF and platelets have been conducted observing the
formation of reversible aggregates under shear flow condi-
tions [20]. Further VWF domain model refinements might
capture atomistic details that influence the cleavage pro-
cess. Domain shielding renders VWF inactive for adhesion
or proteolysis [16]. On an even smaller length scale, local
mutations in the VWF A2 domain that are known to affect
the ADAMTS13 susceptibility [41] and also environmen-
tal conditions play a crucial role, e.g. calcium stabilizes
the A2 domain and thus regulates the unfolding [42]. It
would be desirable to capture such effects in simple physi-
cal models that might be able to relate mutations directly
to hemostatic dysfunction.
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