94 research outputs found

    Combination Rules, Charge Symmetry, and Hall Effect in Cuprates

    Full text link
    The rule relating the observed Hall coefficient to the spin and charge responses of the uniform doped Mott insulator is derived. It is essential to include the contribution of holon and spinon three-current correlations to the effective action of the gauge field. In the vicinity of the Mott insulating point the Hall coefficient is holon dominated and weakly temperature dependent. In the vicinity of a point of charge conjugation symmetry the holon contribution to the observed Hall coefficient is small: the Hall coefficient follows the temperature dependence of the diamagnetic susceptibility with a sign determined by the Fermi surface shape. NOTE: document prepared using REVTEX. (3 Figs, not included, available on request from: [email protected])Comment: 8 page

    Thermal Hall conductivity of marginal Fermi liquids subject to out-of plane impurities in high-TcT_c cuprates

    Full text link
    The effect of out-of-plane impurities on the thermal Hall conductivity κxy\kappa_{xy} of in-plane marginal-Fermi-liquid (MFL) quasiparticles in high-TcT_c cuprates is examined by following the work on electrical Hall conductivity σxy\sigma_{xy} by Varma and Abraham [Phys. Rev. Lett. 86, 4652 (2001)]. It is shown that the effective Lorentz force exerted by these impurities is a weak function of energies of the MFL quasiparticles, resulting in nearly the same temperature dependence of κxy/T\kappa_{xy}/T and σxy\sigma_{xy}, indicative of obedience of the Wiedemann-Franz law. The inconsistency of the theoretical result with the experimental one is speculated to be the consequence of the different amounts of out-of-plane impurities in the two YBaCuO samples used for the κxy\kappa_{xy} and σxy\sigma_{xy} measurements.Comment: 5 pages, 2 eps figures; final versio

    Non-magnetic impurity scattering in a dx2y2d_{x^2 - y^2} superconductor near a van Hove point: Zn versus Ni in the cuprates

    Full text link
    We consider the effect of non-magnetic impurities in a dx2y2d_{x^2 - y^2} superconductor with \ef close to a van Hove singularity. It is shown that the non-trivial density of states (DOS) allows for resonant scattering already at intermediate potential strengths u12|u| \approx 1-2eV. The residual DOS at \ef, and the \tc suppression rate are found to strongly depend on the carrier concentration. Quantitative agreement with experiments on Zn and Ni doped cuprates is obtained by adjusting a single parameter, uu.Comment: 4 pages uuencoded compressed Postscript (Minor changes

    Zn-doping effect on the magnetotransport properties of Bi_{2}Sr_{2-x}La_{x}CuO_{6+\delta} single crystals

    Full text link
    We report the magnetotransport properties of Bi_{2}Sr_{2-x}La_{x}Cu_{1-z}Zn_{z}O_{6+\delta} (Zn-doped BSLCO) single crystals with z of up to 2.2%. Besides the typical Zn-doping effects on the in-plane resistivity and the Hall angle, we demonstrate that the nature of the low-temperature normal state in the Zn-doped samples is significantly altered from that in the pristine samples under high magnetic fields. In particular, we observe nearly-isotropic negative magnetoresistance as well as an increase in the Hall coefficient at very low temperatures in non-superconducting Zn-doped samples, which we propose to be caused by the Kondo scattering from the local moments induced by Zn impurities.Comment: 4 pages, 4 figures, final version (one reference added), published in Phys. Rev.

    Impurity and strain effects on the magnetotransport of La1.85Sr0.15Cu(1-y)Zn(y)O4 films

    Full text link
    The influence of zinc doping and strain related effects on the normal state transport properties(the resistivity, the Hall angle and the orbital magneto- resistance(OMR) is studied in a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y between 0 and 0.12 and various degrees of strain induced by the mismatch between the films and the substrate. The zinc doping affects only the constant term in the temperature dependence of cotangent theta but the strain affects both the slope and the constant term, while their ratio remains constant.OMR is decreased by zinc doping but is unaffected by strain. The ratio delta rho/(rho*tan^2 theta) is T-independent but decreases with impurity doping. These results put strong constraints on theories of the normal state of high- temperature superconductors

    Sliding Luttinger liquid phases

    Full text link
    We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can {\it stabilize} a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi liquid state: the crossed sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature TT as T0T \to 0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure

    Hall effect in the marginal Fermi liquid regime of high-Tc superconductors

    Full text link
    The detailed derivation of a theory for transport in quasi-two-dimensional metals, with small-angle elastic scattering and angle-independent inelastic scattering is presented. The transport equation is solved for a model Fermi surface representing a typical cuprate superconductor. Using the small-angle elastic and the inelastic scattering rates deduced from angle-resolved photoemission experiments, good quantitative agreement with the observed anomalous temperature dependence of the Hall angle in optimally doped cuprates is obtained, while the resistivity remains linear in temperature. The theory is also extended to the frequency-dependent complex Hall angle

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure

    Distinguishing d-wave from highly anisotropic s-wave superconductors

    Full text link
    Systematic impurity doping in the Cu-O plane of the hole-doped cuprate superconductors may allow one to decide between unconvention al ("d-wave") and anisotropic conventional ("s-wave") states as possible candidates for the order parameter in these materials. We show that potential scattering of any strength always increases the gap minima of such s-wave states, leading to activated behavior in temperature with characteristic impurity concentration dependence in observable quantities such as the penetration depth. A magnetic component to the scattering may destroy the energy gap and give rise to conventional gapless behavior, or lead to a nonmonotonic dependence of the gap on impurity concentration. We discuss how experiments constrain this analysis.Comment: 5 page

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995
    corecore