94 research outputs found
Combination Rules, Charge Symmetry, and Hall Effect in Cuprates
The rule relating the observed Hall coefficient to the spin and charge
responses of the uniform doped Mott insulator is derived. It is essential to
include the contribution of holon and spinon three-current correlations to the
effective action of the gauge field. In the vicinity of the Mott insulating
point the Hall coefficient is holon dominated and weakly temperature dependent.
In the vicinity of a point of charge conjugation symmetry the holon
contribution to the observed Hall coefficient is small: the Hall coefficient
follows the temperature dependence of the diamagnetic susceptibility with a
sign determined by the Fermi surface shape. NOTE: document prepared using
REVTEX. (3 Figs, not included, available on request from: [email protected])Comment: 8 page
Thermal Hall conductivity of marginal Fermi liquids subject to out-of plane impurities in high- cuprates
The effect of out-of-plane impurities on the thermal Hall conductivity
of in-plane marginal-Fermi-liquid (MFL) quasiparticles in
high- cuprates is examined by following the work on electrical Hall
conductivity by Varma and Abraham [Phys. Rev. Lett. 86, 4652
(2001)]. It is shown that the effective Lorentz force exerted by these
impurities is a weak function of energies of the MFL quasiparticles, resulting
in nearly the same temperature dependence of and ,
indicative of obedience of the Wiedemann-Franz law. The inconsistency of the
theoretical result with the experimental one is speculated to be the
consequence of the different amounts of out-of-plane impurities in the two
YBaCuO samples used for the and measurements.Comment: 5 pages, 2 eps figures; final versio
Non-magnetic impurity scattering in a superconductor near a van Hove point: Zn versus Ni in the cuprates
We consider the effect of non-magnetic impurities in a
superconductor with \ef close to a van Hove singularity. It is shown that the
non-trivial density of states (DOS) allows for resonant scattering already at
intermediate potential strengths eV. The residual DOS at
\ef, and the \tc suppression rate are found to strongly depend on the carrier
concentration. Quantitative agreement with experiments on Zn and Ni doped
cuprates is obtained by adjusting a single parameter, .Comment: 4 pages uuencoded compressed Postscript (Minor changes
Zn-doping effect on the magnetotransport properties of Bi_{2}Sr_{2-x}La_{x}CuO_{6+\delta} single crystals
We report the magnetotransport properties of
Bi_{2}Sr_{2-x}La_{x}Cu_{1-z}Zn_{z}O_{6+\delta} (Zn-doped BSLCO) single crystals
with z of up to 2.2%. Besides the typical Zn-doping effects on the in-plane
resistivity and the Hall angle, we demonstrate that the nature of the
low-temperature normal state in the Zn-doped samples is significantly altered
from that in the pristine samples under high magnetic fields. In particular, we
observe nearly-isotropic negative magnetoresistance as well as an increase in
the Hall coefficient at very low temperatures in non-superconducting Zn-doped
samples, which we propose to be caused by the Kondo scattering from the local
moments induced by Zn impurities.Comment: 4 pages, 4 figures, final version (one reference added), published in
Phys. Rev.
Impurity and strain effects on the magnetotransport of La1.85Sr0.15Cu(1-y)Zn(y)O4 films
The influence of zinc doping and strain related effects on the normal state
transport properties(the resistivity, the Hall angle and the orbital magneto-
resistance(OMR) is studied in a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with
values of y between 0 and 0.12 and various degrees of strain induced by the
mismatch between the films and the substrate. The zinc doping affects only the
constant term in the temperature dependence of cotangent theta but the strain
affects both the slope and the constant term, while their ratio remains
constant.OMR is decreased by zinc doping but is unaffected by strain. The ratio
delta rho/(rho*tan^2 theta) is T-independent but decreases with impurity
doping. These results put strong constraints on theories of the normal state of
high- temperature superconductors
Sliding Luttinger liquid phases
We study systems of coupled spin-gapped and gapless Luttinger liquids. First,
we establish the existence of a sliding Luttinger liquid phase for a system of
weakly coupled parallel quantum wires, with and without disorder. It is shown
that the coupling can {\it stabilize} a Luttinger liquid phase in the presence
of disorder. We then extend our analysis to a system of crossed Luttinger
liquids and establish the stability of a non-Fermi liquid state: the crossed
sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a
finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperature as . This two-dimensional
system has many properties of a true isotropic Luttinger liquid, though at zero
temperature it becomes anisotropic. An extension of this model to a
three-dimensional stack exhibits a much higher in-plane conductivity than the
conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure
Hall effect in the marginal Fermi liquid regime of high-Tc superconductors
The detailed derivation of a theory for transport in quasi-two-dimensional
metals, with small-angle elastic scattering and angle-independent inelastic
scattering is presented. The transport equation is solved for a model Fermi
surface representing a typical cuprate superconductor. Using the small-angle
elastic and the inelastic scattering rates deduced from angle-resolved
photoemission experiments, good quantitative agreement with the observed
anomalous temperature dependence of the Hall angle in optimally doped cuprates
is obtained, while the resistivity remains linear in temperature. The theory is
also extended to the frequency-dependent complex Hall angle
Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}
In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR)
are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals
with various carrier concentrations, from underdope to overdope. Our crystals
show the highest T_c (33 K) and the smallest residual resistivity ever reported
for Bi-2201 at optimum doping. It is found that the temperature dependence of
the Hall angle obeys a power law T^n with n systematically decreasing with
increasing doping, which questions the universality of the Fermi-liquid-like
T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of
the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab}
shows a good T-linear behavior. The systematics of the MR indicates an
increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure
Distinguishing d-wave from highly anisotropic s-wave superconductors
Systematic impurity doping in the Cu-O plane of the hole-doped cuprate
superconductors may allow one to decide between unconvention al ("d-wave") and
anisotropic conventional ("s-wave") states as possible candidates for the order
parameter in these materials. We show that potential scattering of any strength
always increases the gap minima of such s-wave states, leading to activated
behavior in temperature with characteristic impurity concentration dependence
in observable quantities such as the penetration depth. A magnetic component to
the scattering may destroy the energy gap and give rise to conventional gapless
behavior, or lead to a nonmonotonic dependence of the gap on impurity
concentration. We discuss how experiments constrain this analysis.Comment: 5 page
Spin-Charge Separation in the Model: Magnetic and Transport Anomalies
A real spin-charge separation scheme is found based on a saddle-point state
of the model. In the one-dimensional (1D) case, such a saddle-point
reproduces the correct asymptotic correlations at the strong-coupling
fixed-point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at {\em finite
doping} so that a spin-charge deconfinement is obtained for its first time in
2D. The gap in the gauge fluctuation disappears at half-filling limit, where a
long-range antiferromagnetic order is recovered at zero temperature and spinons
become confined. The most interesting features of spin dynamics and transport
are exhibited at finite doping where exotic {\em residual} couplings between
spin and charge degrees of freedom lead to systematic anomalies with regard to
a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic
fluctuation with a small, doping-dependent energy scale is found, which is
characterized in momentum space by a Gaussian peak at (, ) with
a doping-dependent width (, is the doping
concentration). This commensurate magnetic fluctuation contributes a
non-Korringa behavior for the NMR spin-lattice relaxation rate. There also
exits a characteristic temperature scale below which a pseudogap behavior
appears in the spin dynamics. Furthermore, an incommensurate magnetic
fluctuation is also obtained at a {\em finite} energy regime. In transport, a
strong short-range phase interference leads to an effective holon Lagrangian
which can give rise to a series of interesting phenomena including linear-
resistivity and Hall-angle. We discuss the striking similarities of these
theoretical features with those found in the high- cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request;
minor revisions in the text and references have been made; To be published in
July 1 issue of Phys. Rev. B52, (1995
- …
