The rule relating the observed Hall coefficient to the spin and charge
responses of the uniform doped Mott insulator is derived. It is essential to
include the contribution of holon and spinon three-current correlations to the
effective action of the gauge field. In the vicinity of the Mott insulating
point the Hall coefficient is holon dominated and weakly temperature dependent.
In the vicinity of a point of charge conjugation symmetry the holon
contribution to the observed Hall coefficient is small: the Hall coefficient
follows the temperature dependence of the diamagnetic susceptibility with a
sign determined by the Fermi surface shape. NOTE: document prepared using
REVTEX. (3 Figs, not included, available on request from: [email protected])Comment: 8 page