33 research outputs found

    On the Möbius function of Hom( P, Q

    No full text

    Profinite posets

    No full text

    Mind the gap: Analysis of marker-assisted breeding strategies for inbred mouse strains

    No full text
    The development of congenic mouse strains is the principal approach for confirming and fine mapping quantitative trait loci, as well as for comparing the phenotypic effect of a transgene or gene-targeted disruption between different inbred mouse strains. The traditional breeding scheme calls for at least nine consecutive backcrosses before establishing a congenic mouse strain. Recent availability of genome sequence and high-throughput genotyping now permit the use of polymorphic DNA markers to reduce this number of backcrosses, and empirical data suggest that marker-assisted breeding may require as few as four backcrosses. We used simulation studies to investigate the efficiency of different marker-assisted breeding schemes by examining the trade-off between the number of backcrosses, the number of mice produced per generation, and the number of genotypes per mouse required to achieve a quality congenic mouse strain. An established model of crossover interference was also incorporated into these simulations. The quality of the strain produced was assessed by the probability of an undetected region of heterozygosity (i.e., “gaps”) in the recipient genetic background, while maintaining the desired donor-derived interval. Somewhat surprisingly, we found that there is a relatively high probability for undetected gaps in potential breeders for establishing a congenic mouse strain. Marker-assisted breeding may decrease the number of backcross generations required to generate a congenic strain, but only additional backcrossing will guarantee a reduction in the number and length of undetected gaps harboring contaminating donor alleles

    Incorporating interference into linkage analysis for experimental crosses

    Get PDF
    The phenomenon of interference in genetic recombination is well-known and studied in a wide variety of organisms. Multilocus linkage analysis, which makes use of recombination patterns among all genetic markers simultaneously, is routinely used with data on humans and experimental organisms to build genetic maps. It is also used to try to determine the genes involved in traits of interest, such as common diseases. Most linkage analyses performed today ignore the occurrence of genetical interference. We present an extension to the Lander–Green algorithm for experimental crosses (backcross and intercross) to incorporate crossover interference according to the χ2 model. Simulation results show the impact of using this model on the accuracy of estimated genetic maps

    The serine repeat antigen (SERA) gene family phylogeny in Plasmodium: the impact of GC content and reconciliation of gene and species trees.

    No full text
    Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies
    corecore