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SUMMARY

The phenomenon of interference in genetic recombination is well-known and studied in a wide variety
of organisms. Multilocus linkage analysis, which makes use of recombination patterns among all genetic
markers simultaneously, is routinely used with data on humans and experimental organisms to build ge-
netic maps. It is also used to try to determine the genes involved in traits of interest, such as common
diseases. Most linkage analyses performed today ignore the occurrence of genetical interference. We
present an extension to the Lander–Green algorithm for experimental crosses (backcross and intercross)
to incorporate crossover interference according to the χ2 model. Simulation results show the impact of
using this model on the accuracy of estimated genetic maps.

Keywords: Crossover interference; Hidden Markov model; Linkage analysis.

1. INTRODUCTION

Genetical interference was first observed in Thomas Hunt Morgan’s Drosophila laboratory early last
century (Muller, 1916). During meiosis, chromosomes replicate, producing sister chromatids. The ho-
mologous chromosomes then pair and synapse, forming a four-strand bundle. Once pairing is complete,
crossing over, the reciprocal exchange of chromosomal segments among nonsister chromatids, begins. As
the chromosomes separate, the crossover positions become visible as chiasmata. Two types of interference
are distinguished in this crossover process: chromatid interference, the nonrandom choice of chromatids
involved in adjacent chiasma, and crossover interference, the nonrandom placement of chiasma along
a chromosome. Experimental evidence in various organisms has shown that crossovers do not occur at
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Incorporating interference into linkage analysis 375

random, rather they are more evenly spaced along a chromosome (e.g. Hultén, 1974; Blank et al., 1988).
Chromatid interference can only be detected if all four products of meiosis can be recovered. However, to
date there has been little evidence of this type of interference in experimental organisms.

For experimental crosses, the most common method of linkage analysis in use is the Lander–Green
(LG) algorithm (Lander and Green, 1987). This algorithm makes use of a hidden Markov model (HMM)
to construct a genetic map using multilocus linkage analysis. The LG approach is based on the assump-
tion that there is no interference, either crossover or chromatid (NI model). The crossover positions are
assumed to follow a Poisson distribution and the nonsister chromatids are chosen at random for each
crossover.

Various models for the crossover process have been introduced over the years (e.g. Karlin and
Liberman, 1979; Risch and Lange, 1979; King and Mortimer, 1990; McPeek and Speed, 1995). The
χ2 distribution was first used in a model for crossing over in Fisher et al. (1947). We consider here a
four-strand version of this model. Foss et al. (1993) gave a simple biological motivation and interpre-
tation for the model based on gene conversions. They proposed that gene conversions are intermediate
events that can resolve in reciprocal crossing over but do not need to do so. The χ2 model assumes that m
noncrossover resolutions of gene conversion occur between each crossover. The gene conversion events
follow a Poisson distribution, and the distance between actual crossovers follows a χ2 distribution with
2(m+1) degrees of freedom. This model has been found to fit observed data from a variety of organisms as
well (Foss et al., 1993; Zhao et al., 1995; Broman et al., 2002), indeed better than other models (McPeek
and Speed, 1995; Broman and Weber, 2000). Yet, despite the literature on alternative crossover models, in
practice the phenomenon of interference is routinely ignored in genetic-mapping exercises. At most, the
Kosambi map function is used after recombination fractions have been estimated under the NI model.

Geneticists have also known for many years that the rate of recombination differs, often substantially,
between males and females for organisms such as humans and the mouse. In other species, such as the
Lepidoptera Bombyx mori and Drosophila melanogaster, recombination does not occur at all in one of the
sexes. This is equivalent to the genetic distances between markers being zero since no recombination is
observed between them. Unfortunately, due to lack of parameter identifiability it is not possible to estimate
sex-specific distances from an F2 cross. The two heterozygous genotypes are indistinguishable, so that if
both recombination fractions are greater than zero, the chromosome on which the crossover occurred
cannot be determined. In the case of no recombination in one sex, genetic distances can be estimated
from a group of F2 progeny. However, if a model of equal recombination between the sexes is used, the
genetic distance estimates will be too small as the model produces, in effect, sex-averaged genetic distance
estimates. When recombination is absent in one sex, these distances will be much smaller than the true
distances in the recombinant sex.

In this paper, we present an extension of the LG algorithm to incorporate crossover interference ac-
cording to the χ2 model. The following section presents the algorithm for both the backcross (BC) and
F2 cases. The special case of no recombination in one sex is also considered for the F2 progeny. In the
results section, the accuracy of this extended algorithm in estimating genetic maps is evaluated through
simulation studies and compared to the original LG algorithm and the Kosambi transformation. The extra
time required to obtain genetic maps when incorporating crossover interference is also considered.

2. MODEL

Let M1, . . . ,MT denote T genetic loci listed in order along a chromosome. The observed genotypic
information can be denoted O = (O1, . . . , OT ), where Ot contains the genotypes of all individuals at
Mt . Define λt = 2(m + 1)dt , where dt is the genetic distance, in Morgans, betweenMt andMt+1 and
m is a defined constant. An important difference between the LG and χ2 algorithms is that LG estimates
the recombination fraction while the χ2 algorithm estimates λt . If m = 0, this gives a direct estimate of
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376 N. J. ARMSTRONG ET AL.

the genetic distance and no transformation is necessary. For m > 0, it estimates a fixed multiple of the
genetic distance.

Under the χ2 model, there are assumed to be m unobserved crossover intermediates between each
crossover. The hidden chain yt for the χ2 model keeps track of both the number of crossover intermediates
that have occurred since the last crossover and the origin of the DNA, grandmaternal (gm) or grandpaternal
(gp). Specifically, the states i = 0, . . . , m represent the event of i crossover intermediates and gm origin
of the DNA, while states i = m +1, . . . , 2m +1 represent the event of i −(m +1) crossover intermediates
and gp origin of the DNA. The process along a chromosome can be described by the embedded chain in
Figure 1. Every (m+1)st event results in a crossover that involves the strand of interest with probability 1

2 .
For example, starting in state 0 we must progress through m steps to state m, the next intermediate which
will result in a crossover. When in state m, there is either a crossover and switch to gp DNA (state m+1) or
there is no crossover and we stay on gm DNA, returning to state 0. Note that if m = 0, the chain is that of
the NI model with the hidden states simply representing regions of gm and gp DNA on the chromosome.

Conditional on parental genotypes, the genotypes of each offspring are independent. Hence, the likeli-
hood may be calculated for each individual separately and then combined. In the discussion that follows,
the HMM is defined for one individual. The superscript k is used when necessary to denote the kth off-
spring and omitted otherwise. It is also assumed, without loss of generality, that the F1 parent is crossed
with individuals from the grandmaternal strain to produce BC progeny.

2.1 Backcross

Given the inbred strains AA and aa, at any locus the BC offspring will have genotype Aa or the genotype
of the homozygous parent (either aa or AA depending on which line the homozygous parent came from).
We define the observed genotypes at a given locus of a BC animal to be A if homozygous and H if

Fig. 1. Embedded chain along a chromosome for the χ2 model with parameter m.
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Incorporating interference into linkage analysis 377

heterozygous. Hence, for a BC experiment, the elements of O are A, H and −, the three possible observed
genotypes, where ‘−’ denotes missing. In this case, we need consider only the chromosome inherited
from the F1 parent.

The initial-state distribution is uniform over all states. The transition probability matrices, A(λt ), at
each marker locus have 2(m + 1) × 2(m + 1) entries of which only 3m + 2 are distinct. The entries ai j (t)
can be related to the distinct elements al(t) by grouping the pairs (i, j) into sets Il :

1. If 0 � i, j � m or i, j > m, (i, j) ∈ Il , where l = j − i .
2. If 0 � i � m, j > m, then for j > i + m, (i, j) ∈ Il , where l = j − i , else (i, j) ∈ Il , where

l = j − i − (m + 1).
3. If i > m, 0 � j � m, then for j + (m + 1) > i − 1, (i, j) ∈ Il , where l = j − i + 2m + 2, else

(i, j) ∈ Il , where l = j − i + (m + 1).

For example, consider a12(t) when m = 2. The chain progresses from state 1 to state 2 if there has
been a single intermediate event, if there have been four intermediate events but no crossover has occurred
(1 → 2 → 0 → 1 → 2), or if any multiple of four intermediate events and an even number of crossovers
have occurred. This is also the same set of circumstances under which the chain could move from state 4
to state 5. In this case, the transition matrix is given by:

A(λt ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 a4 a5

a−1 a0 a1 a−1 a3 a4

a−2 a−1 a0 a−2 a−1 a3

a3 a4 a5 a0 a1 a2

a−1 a3 a4 a−1 a0 a1

a−2 a−1 a3 a−2 a−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Defining

fm,s = 1

2
e−λt

∞∑
k=1

λ
k(m+1)+s
t

(k(m + 1) + s)!
,

the distinct al(t) are

al(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fm,l(λt ), −m � l � −1,

e−λt λl
t

l! + fm,l(λt ), 0 � l � m,

fm,l−(m+1)(λt ), m + 1 � l � 2m + 1.

The probability that a particular genotype is observed at a given marker is conditional on the hidden state
at that marker, that is bi (Ot ) = P(Ot |yt = i). Random errors in the genotyping process of rate ε are
allowed. If there is no genotyping error, 0 � yt � m implies Ot = A and m + 1 � yt � 2m + 1 implies
Ot = H.

Likelihood calculations are done by way of the ‘forward variables’:

αt (i) = P(O1, . . . , Ot , yt = i |λ).
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378 N. J. ARMSTRONG ET AL.

For n offspring, the likelihood is given by

P(O|λ) =
n∏

k=1

2m+1∑
i=0

αk
T (i), (2.1)

where αk
T (i) denotes the value of αT (i) for the kth offspring. The forward variables give the probability

of observing the partial genotype sequence up toMt and being in hidden state i atMt . Likewise, there
are corresponding ‘backward variables’, βt (i), giving the probability of observing the partial genotype
sequence fromMt+1 toMT given the hidden state i atMt . Both the forward and backward variables
are computed recursively.

The expectation maximization (EM) algorithm is employed to determine the maximum likelihood
estimates (MLEs) of the intermarker genetic distances, dt , t = 1, . . . , T − 1. In particular, Baum’s lemma
is used, so that Q(λ, λ′) is explicitly maximized, where

Q(λ, λ′) =
∑

y

P(y, O|λ) log P(y, O|λ′)

and y = (y1, . . . , yT ). In terms of λ′
t this is equivalent to maximizing, for n BC offspring,

n∑
k=1

∑
yk
t ,yk

t+1

P(yk
t , yk

t+1|Ok, λ) log P(yk
t+1|yk

t , λ′
t ) =

n∑
k=1

2m+1∑
l=−m

E(nk
l (t)|O, λ) log al(λ

′
t ),

where nk
l (t) ∈ {0, 1} is defined to be the number of transitions from state i to state j for a pair (i, j) ∈ Il

for the kth offspring. The E step then involves calculating

E(nk
l (t)|O, λ) =

∑
i, j∈Il

ξ k
t (i, j),

where ξt (i, j) = αt (i)ai j (t)b j (Ot+1)βt+1( j)∑
i, j αt (i)ai j (t)b j (Ot+1)βt+1( j) .

For general m there is no closed-form solution to the maximization step. Instead, we must search for
the maximum,

argmax
λ′

t

n∑
k=1

2m+1∑
l=−m

log al(λ
′
t )E(nk

l (t)|O, λ).

Brent’s (1973) method is used to find a solution numerically, iterating the E and M steps until the scaled
genetic distance estimates, λt , change by less than a prespecified tolerance level.

2.2 F2 intercross

Given the two inbred strains AA and aa, at a given locus each F2 offspring will be homozygous AA,
homozygous aa, or heterozygous Aa. The observed genotypes are defined as A or B (homozygous AA or
aa) and H if heterozygous. We can further define two incomplete genotypes C and D to be not B (i.e. AA
or Aa) and not A (i.e. aa or Aa), respectively. For an F2 intercross, both chromosomes must be considered
because it is impossible to determine, at each heterozygous locus, which allele came from which parent.
There are 4(m + 1)2 hidden states, since on each chromosome the chain could be in any one of the states
0, . . . , 2m + 1. For example, if m = 1, there are 16 hidden states, shown here with their corresponding
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Incorporating interference into linkage analysis 379

states on each individual chromosome:

0 ↔ 0, 0 4 ↔ 1, 0 8 ↔ 2, 0 12 ↔ 3, 0
1 ↔ 0, 1 5 ↔ 1, 1 9 ↔ 2, 1 13 ↔ 3, 1
2 ↔ 0, 2 6 ↔ 1, 2 10 ↔ 2, 2 14 ↔ 3, 2
3 ↔ 0, 3 7 ↔ 1, 3 11 ↔ 2, 3 15 ↔ 3, 3.

Again, the convention that states 0, . . . , m represent gm DNA and m +1, . . . , 2m +1 gp DNA on a single
chromosome is used. The initial-state distribution is assumed uniform. The conditional distribution of the
observed genotypes given the hidden state i atMt allows for the incomplete marker genotypes C and D,
and incorporates a random error rate of ε.

The transitions on the maternal and paternal chromosomes are independent; hence, the joint probabil-
ity is simply the product of the marginal probabilities of the transitions on each chromosome. Formally,
the transition probability matrix for the states is given by

C(λ
f
t , λ

p
t ) = A(λ

f
t ) ⊗ A(λ

p
t ),

where A(λ f
t ) and A(λp

t ) are the transition matrices on the maternal and paternal chromosomes, respec-
tively, and ⊗ the Kronecker product. It is generally assumed that the recombination rates for the two sexes
are equal, i.e. λ

f
t = λ

p
t = λt and C(λt ) = A(λt ) ⊗ A(λt ). In general, the (nondistinct) ci j (t) are obtained

by translating the indices i and j into the corresponding indices for the transition matrix A(λt ) for each
individual chromosome. The algorithm detailed in the previous section is used to determine the distinct
quantities in both cases (as1(t) and as2(t)), giving

ci j (t) = as1(t)as2(t), −m � s1 � s2 � 2m + 1.

For example, when m = 1 the states are given above and the probability of moving from state 1 to state
4 involves a transition from states 0 to 1 on the first chromosome and 1 to 0 on the second chromosome.
Using the notation from Section 2.1, the marginal probabilities for these transitions are a1(t) and a−1(t),
respectively. Therefore, in this case, c14(t) = a1(t)a−1(t).

The special case of no recombination in one sex only affects the transition matrix in the model. Without
loss of generality, if λ

f
t = 0 for t = 1, . . . , T − 1 (i.e. no female recombination), then:

A(λ
f
t ) = I2m+1,

where I2m+1 is the (2m + 1) × (2m + 1) identity matrix. The joint transition matrix then simplifies to

C(λ
f
t , λ

p
t ) =

⎛
⎜⎜⎜⎜⎝

A(λ
p
t ) 0 · · · 0

0 A(λ
p
t ) · · · 0

...
. . .

...

0 · · · 0 A(λ
p
t )

⎞
⎟⎟⎟⎟⎠ .

In other words, only the block diagonal elements of C(λ
f
t , λ

p
t ) are nonzero.

Having defined the elements of the HMM, calculation of the forward, backward, and ξ variables can
then be carried out as in Section 2.1, substituting ci j (t) in place of ai j (t). In order to find the MLEs of
genetic distance, we invoke the EM algorithm once more. For n F2 offspring and equal recombination
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rates for the sexes, i.e. λ f = λp, Q(λ, λ′) in terms of λ′
t becomes, in the general case,

n∑
k=1

∑
yk
t ,yk

t+1

P(yk
t , yk

t+1|Ok, λ) log P(yk
t+1|yk

t , λ′
t )

=
n∑

k=1

2m+1∑
l1,l2=−m

log[al1(λ
′
t )al2(λ

′
t )]E(nk

l1,l2
(t)|O, λ).

nk
l1,l2

(t) is the number of transitions from i to j for a pair (i, j) related to Il1 and Il2 on the individual

chromosomes. The E step consists then of calculating E(nk
l1,l2

(t)|O, λ) and the M step is carried out
numerically using Brent’s (1973) method. To avoid underflow problems, the forward and backward vari-
ables are scaled by way of logarithms for all values of m and for all progeny numbers, when there are more
than 100 markers in the data set for the BC HMM and, similarly, when there are more than 70 markers in
the F2 case.

3. RESULTS

To test the performance of the χ2 HMM, genotype data were simulated for both F2 and BC breeding
schemes. The data were simulated under the assumption of crossover interference. To mimic biological
reality, the χ2 model with m = 6 was used. This model was previously estimated to provide the best fit
for mouse data (Lin and Speed, 1996).

The programs were first verified by comparing all results (estimated genetic distances and likelihood
values) obtained when m = 0 against both MapMaker and R/qtl (Broman et al., 2003) which assume no
crossover interference. Furthermore, for the BC case, the theoretical and empirical map functions were
compared for a variety of m values. For fixed m, 1000 BC mice were simulated and genotyped every
centimorgan along a single chromosome. Using this genotype data, the empirical recombination fractions
could then be computed. Plotting the empirical recombination fractions against the true genetic distance
and the theoretical map function, given by

θ = 1

2

[
1 − e−2d

m∑
i=0

(2d)i

i!

(
1 − i

m + 1

)]
,

on the same set of axes found close agreement. Figure 2 depicts the results for m = 0, 1, 2, and 3.

3.1 Bombyx mori

A set of F2 genotype data for B. mori, the domesticated silkworm, was obtained from D. G. Heckel
(Shi et al., 1995). In Lepidoptera, females are the heterogametic sex and have achiasmatic meiosis (no
crossing over). The purpose of the original study was to create a genetic linkage map for B. mori. The data
consist of the genotypes of 52 F2 progeny at a total of 58 markers. The markers are both dominant and
codominant. Fifty of the autosomal loci were grouped into a total of 15 primary linkage groups (PLGs),
ranging from 2 to 8 loci each, by Shi et al. (1995). The PLGs were taken as originally assigned and the
genetic maps were re-estimated using the HMM with m = 0 in order to verify the published map. In
addition to estimating the intermarker genetic distances, the log-likelihood values for all possible map
orders were calculated conditional on their PLG assignment to verify the published orders for all PLGs.
The results, both estimated intermarker genetic distances and map orders, matched the published maps for
all PLGs except PLG 9 and 15 (Figure 3).
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Incorporating interference into linkage analysis 381

Fig. 2. Empirical and theoretical map functions for various values of m.

Fig. 3. Genetic maps for PLG 9 and 15, as estimated by Shi et al. (1995) (listed first) and by using the HMM (second).
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PLG 15 consists of three dominant markers. The slight difference in estimated distances can be ex-
plained by the different estimation methods used. Shi et al. (1995) analyzed the linkage data under the
assumptions of no crossing over in the female and no crossover interference, using maximum likeli-
hood estimation and the EM algorithm. For some triple genotype combinations of dominant markers the
Markov property of the observed genotype information O is lost, e.g. P(O3 = C |O1 = C, O2 = C) 	=
P(O3 = C |O1 = A, O2 = C), making it incorrect to calculate the likelihood using a Markov chain, as
was done by Shi et al. Hence, multilocus probabilities must be calculated some other way, such as by
using an HMM. The inclusion of the hidden chain allows for the correct calculation of multilocus proba-
bilities when there is dominance or missing data at some loci. Our method therefore makes more efficient
use of the data for this PLG.

The largest PLG was PLG 9, consisting of eight loci. For this PLG, Shi et al. (1995) used MapMaker
to estimate an approximation to the maximum likelihood map, as their program was too slow to calculate
the maps for all possible orders in a reasonable time. Furthermore, the recombination fractions between
loci were estimated from the MapMaker sex-averaged estimates using a linear regression (for details see
Shi et al., 1995). In contrast, using the HMM approach, the likelihood values for all possible orders were
calculated and the genetic distances estimated under the assumption of no crossing over in the female. We
concluded that the order of loci was the same as the published order but that the genetic distance estimates
were different. Given their ad hoc method of estimating the distances for this PLG, it is not surprising that
the HMM distance estimates differ from their published ones (Figure 3).

3.2 Timing

As m increases, the number of states in the HMM also increases. Recall there are 2(m + 1) states for BC
progeny and 4(m + 1)2 states for F2 progeny. The increase in the number of states leads, necessarily, to
an increase in the time taken to converge to the maximum likelihood estimates due to more computations
being required to calculate the forward, backward, and ξ variables. The time required to perform the E
step also increases with m. However, finding the values of λt which maximize Q(λ, λ′) at each iteration
(the M step) requires only a slight increase in time. An important issue with regard to the time taken to
find the estimated genetic distances is that λt , not dt , is estimated. The shape of Q(λt , λ

′
t ) rapidly be-

comes very flat as the value of λt approaches the maximum likelihood estimate, so that in order to get
an accurate estimate of dt many iterations are often required. It is the increased number of iterations of
the EM algorithm coupled with the increase in E step time which gives rise to the large overall increase
in time.

The time taken to find the maximum likelihood estimates for varying m values was investigated for
both BC and F2 cases. The impact of increasing the number of mice in the data set and, separately, the
impact of increasing the number of genetic markers were investigated. The value of m used for simulating
the genotype data was equal to the value of m used in the HMM. Initial values for the distances were taken
to be the NI (m = 0) estimates.

All programs were run on 400-MHz UltraSparc machines with 256 MB RAM. The HMM does not
require huge amounts of memory, but the time taken depends quite heavily on the speed of the machine.
Under each set of conditions investigated, the differences in the time taken for each data set were directly
attributable to the number of iterations of the EM algorithm required before the convergence tolerance
was satisfied. The time taken rises linearly as both the number of markers and the number of mice rise,
with times also increasing with m. Kinks in Figure 4 can be attributed to the fact that the machines used
were not available solely for our purposes. However, the graphs give a rough indication of the increase in
time required.

The relationship between number of mice, time taken, and m is very similar for BC (Figure 4) and F2
mice (not shown), except that the times involved are much larger in the F2 case. For 1600 mice, it took
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Incorporating interference into linkage analysis 383

Fig. 4. Impact of increasing the number of mice on the time taken to find the distance MLEs for 10 intervals in the
BC case.

the BC HMM 0.4 s, on average, to compute distance estimates for 10 intervals when m = 0, whereas
when m = 6 the time taken rose to 321 s (5.5 min), an 800-fold increase. In the F2 case, it took 12.2 s for
m = 0, and 235 880 s (65.5 h) for m = 6, an almost 20 000-fold increase. When investigating the impact
of the number of markers in a data set on time taken to find the distance MLEs, the number of mice was
fixed at 400 in the BC case but reduced to 100 for F2 data. Again, the relationship between the number
of markers, m, and the amount of time taken to calculate the MLEs was very similar for F2 and BC mice
(data not shown). The time taken to calculate distance estimates rises linearly with an exponential increase
in markers, similar to that shown in Figure 4 for the number of mice. For example, for 32 markers, the time
taken to produce distance estimates when m = 0 was, on average, 4.4 s and increased to approximately
13 h if m = 6, for F2 data, a 10 000-fold increase. In the BC case, under the no-interference model,
estimates were obtained in 0.18 s compared to 163 s (2.7 min) if m = 6.

3.3 Accuracy

The most important gain that we hope to make by extending the LG algorithm to incorporate crossover
interference is in the accuracy of the estimates. In order to investigate this, both BC and F2 mice were
simulated under the χ2 model with m = 6. In each instance, 1000 sets of 300 BC mice and 100 sets of
300 F2 mice were simulated and the distance estimates obtained using both the NI model and the χ2 model
recorded. The accuracies of distance estimates obtained using the Kosambi map function to transform the
recombination fractions obtained under the NI model were also compared.

The entries in Table 1 demonstrate that as the distance between markers increases, the gains in preci-
sion from using the χ2 model also increase when the data are fully informative, even if the wrong level
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Table 1. Root mean squared error in centimorgans of the distance estimates obtained under various
models for fully informative BC and F2 data simulated under the χ2 model with m = 6

Model used True distance (cM)

BC data F2 data

5 10 20 5 10 20

NI 1.38 2.28 3.90 0.87 1.58 3.04

χ2
10(m = 4) 1.24 1.82 2.46 0.78 1.27 1.93

χ2
14(m = 6) 1.23 1.81 2.38 0.78 1.26 1.87

χ2
18(m = 8) 1.23 1.81 2.34

NI + Kosambi 1.25 1.89 2.78 0.79 1.32 2.17

Fig. 5. Box plot of distance estimates obtained when true distance is 10 cM. In this case 300 BC meioses were
simulated with 1% random genotyping error.

of interference is used in the HMM. Introducing a random genotyping error into the genotype data when
either no error or the wrong amount of error is allowed for in the HMM produces similar results. For all
distances the χ2 model is more accurate, but the gains in accuracy are sometimes slight, especially if the
genetic distances involved are small. Figure 5 shows the results found under one scenario, the results being
typical of those found under other scenarios also. Simulations with 5% and 10% missing genotype data,
and both 2% and 4% incomplete genotypes for the F2 case were also performed. We found that this con-
clusion holds true in those cases also (data not shown). The results presented in Figure 6 are representative
of those found under the different conditions investigated, for both F2 and BC data.

4. CONCLUSIONS

We have developed and tested an HMM for estimating genetic distances that incorporates crossover inter-
ference, specifically under the χ2 model. The HMM for F2 data was extended to incorporate the situation
where there is no crossing over in one of the sexes. The χ2 HMM produces more accurate estimates of

 by guest on A
pril 2, 2011

biostatistics.oxfordjournals.org
D

ow
nloaded from

 

http://biostatistics.oxfordjournals.org/


Incorporating interference into linkage analysis 385

Fig. 6. Box plot of distance estimates obtained when true distance is 5 cM. In this case, 300 F2 meioses were simulated
with 5% missing and 4% incomplete genotyping data.

genetic distance, in the presence of crossover interference, than the NI model which is commonly imple-
mented.

The gains in accuracy achieved by using the χ2 model, with m = 6, instead of the Kosambi map func-
tion, are small for distances under 10 cM. With the ever-increasing number of genetic markers available
and the falling costs of genotyping, in future we can expect many markers to be typed for a particular
experimental cross, leading to a reduction in the typical intermarker genetic distance. The use of single-
nucleotide polymorphisms and microarray technology for genotyping purposes will also mean smaller
distances between markers. Using a lower level of interference than true (m = 4 instead of m = 6) re-
sulted in very little difference in the level of accuracy obtained, likewise if a slightly higher m is used in
the HMM. The problem of estimation of m has been treated in detail by Zhao et al. (1995) and Goldstein
et al. (1997). The method they use is to compute the maximum likelihood for different values of m and
compare them. The HMM presented in this paper may also be used to estimate the level of interference
using the same approach of comparing likelihood values for different m values (NJ Armstrong and TP
Speed, in preparation). The computational cost is equal to the sum of the computational costs of maxi-
mizing the likelihood for the individual values of m. The accuracy of the estimate obtained is in large part
dependent on the number of individuals in the cohort and the number of markers genotyped. A more re-
alistic model for the distribution of crossovers along a chromosome is a mixture of the χ2 and NI models
(Copenhaver et al., 2002). For small-mixture probabilities, the results on accuracy of distance estimates
are likely to be similar to those presented here.

The time taken to find estimates of genetic distance for F2 data with either a large number of markers
or progeny, for large levels of interference (m = 6), is at least 1000 times more than if no interference is
assumed, and can take as much as 20 000 times longer. The increase in time required in conjunction with
the small increases in accuracy suggests that this model will not become widely implemented in practice,
even with the rapid increase in computing power. Development of the HMM allowing for crossing over in
only one sex, for both the χ2 model and the NI model, will hopefully be of use for researchers involved
with organisms such as those in the order Lepidoptera.

The software used in this paper is available on request from the first author.
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