530 research outputs found

    Decoherence by a nonlinear environment: canonical vs. microcanonical case

    Get PDF
    We compare decoherence induced in a simple quantum system (qubit) for two different initial states of the environment: canonical (fixed temperature) and microcanonical (fixed energy), for the general case of a fully interacting oscillator environment. We find that even a relatively compact oscillator bath (with the effective number of degrees of freedom of order 10), initially in a microcanonical state, will typically cause decoherence almost indistinguishable from that by a macroscopic, thermal environment, except possibly at singularities of the environment's specific heat (critical points). In the latter case, the precise magnitude of the difference between the canonical and microcanonical results depends on the critical behavior of the dissipative coefficient, characterizing the interaction of the qubit with the environment.Comment: 18 pages, revtex, 2 figures; minor textual changes, corrected typo in eq. (53) (v2); textual changes, mostly in the introduction (v3

    Dark energy from conformal symmetry breaking

    Full text link
    The breakdown of conformal symmetry in a conformally invariant scalar-tensor gravitational model is revisited in the cosmological context. Although the old scenario of conformal symmetry breaking in cosmology containing scalar field has already been used in many earlier works, it seems that no special attention has been paid for the investigation on the possible connection between the breakdown of conformal symmetry and the existence of dark energy. In this paper, it is shown that the old scenario of conformal symmetry breaking in cosmology, if properly interpreted, not only has a potential ability to describe the origin of dark energy as a symmetry breaking effect, but also may resolve the coincidence problem.Comment: 11 pages, minor revision, published online in EPJ

    Spin injection into a ballistic semiconductor microstructure

    Full text link
    A theory of spin injection across a ballistic ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann regime. Spin injection coefficient γ\gamma is suppressed by the Sharvin resistance of the semiconductor rN=(h/e2)(π2/SN)r_N^*=(h/e^2)(\pi^2/S_N), where SNS_N is the Fermi-surface cross-section. It competes with the diffusion resistances of the ferromagnets rFr_F, and γrF/rN1\gamma\sim r_F/r_N^*\ll 1 in the absence of contact barriers. Efficient spin injection can be ensured by contact barriers. Explicit formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results of the ballistic and diffusive theories of spin injection is added. To this end, some notations are changed. Three references added, typos correcte

    Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering

    Full text link
    We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acoustic peaks for the multipoles with l>~200 while it enhances the amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate a *unique phase shift* of the CMB acoustic oscillations that for adiabatic initial conditions cannot be caused by any other standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed of the photon-baryon plasma. We find that from a high resolution, low noise instrument such as CMBPOL the effective number of light neutrino species can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR

    A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

    Full text link
    We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.Comment: 12 pages, 6 figure

    Constraints on Inflation

    Get PDF
    A short introduction to structure formation is given, followed by a discussion of the possible characteristics of the initial perturbations assuming a generic inflationary origin. Observational data related to large-scale structure and the cosmic microwave background radiation is then used in an attempt to constrain the characteristics of such perturbations. Future directions are also explored. The possibility of direct detection of a stochastic gravitational wave background produced during an inflationary phase in the early Universe is briefly discussed, as well as the available evidence regarding the present value of the total energy density in the Universe.Comment: 24 pages, Latex, no figures, based on talks given at the Cargese School "Cosmology 2000", to be published in New Astronomy, companion paper to astro-ph/000949

    Observational constraints on holographic dark energy with varying gravitational constant

    Full text link
    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ\sigma we find ΩΛ0=0.720.03+0.03\Omega_{\Lambda0}=0.72^{+0.03}_{-0.03}, Ωk0=0.00130.0040+0.0130\Omega_{k0}=-0.0013^{+0.0130}_{-0.0040}, c=0.800.14+0.19c=0.80^{+0.19}_{-0.14} and ΔGG/G=0.00250.0050+0.0080\Delta_G\equiv G'/G=-0.0025^{+0.0080}_{-0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w0=1.040.20+0.15w_0=-1.04^{+0.15}_{-0.20}.Comment: 12 pages, 2 figures, version published in JCA

    Spin Transport in Two Dimensional Hopping Systems

    Full text link
    A two dimensional hopping system with Rashba spin-orbit interaction is considered. Our main interest is concerned with the evolution of the spin degree of freedom of the electrons. We derive the rate equations governing the evolution of the charge density and spin polarization of this system in the Markovian limit in one-particle approximation. If only two-site hopping events are taken into account, the evolution of the charge density and of the spin polarization is found to be decoupled. A critical electric field is found, above which oscillations are superimposed on the temporal decay of the total polarization. A coupling between charge density and spin polarization occurs on the level of three-site hopping events. The coupling terms are identified as the anomalous Hall effect and the recently proposed spin Hall effect. Thus, an unpolarized charge current through a sheet of finite width leads to a transversal spin accumulation in our model system.Comment: 15 pages, 3 figure

    Magneto-transport in a quantum network: Evidence of a mesoscopic switch

    Full text link
    We investigate magneto-transport properties of a θ\theta shaped three-arm mesoscopic ring where the upper and lower sub-rings are threaded by Aharonov-Bohm fluxes ϕ1\phi_1 and ϕ2\phi_2, respectively, within a non-interacting electron picture. A discrete lattice model is used to describe the quantum network in which two outer arms are subjected to binary alloy lattices while the middle arm contains identical atomic sites. It is observed that the presence of the middle arm provides localized states within the band of extended regions and lead to the possibility of switching action from a high conducting state to a low conducting one and vice versa. This behavior is justified by studying persistent current in the network. Both the total current and individual currents in three separate branches are computed by using second-quantized formalism and our idea can be utilized to study magnetic response in any complicated quantum network. The nature of localized eigenstates are also investigated from probability amplitudes at different sites of the quantum device.Comment: 7 pages, 9 figure

    Graviton production from extra dimensions

    Get PDF
    Graviton production due to collapsing extra dimensions is studied. The momenta lying in the extra dimensions are taken into account. A DD-dimensional background is matched to an effectively four-dimensional standard radiation dominated universe. Using observational constraints on the present gravitational wave spectrum, a bound on the maximal temperature at the beginning of the radiation era is derived. This expression depends on the number of extra dimensions, as well as on the DD-dimensional Planck mass. Furthermore, it is found that the extra dimensions have to be large.Comment: LaTeX file, 14 pages, 4 figure
    corecore