522 research outputs found
Singlet Charge Quark hiding the Top: Tevatron and LEP Implications
If and quarks are strongly mixed with a weak singlet charge
quark, could be suppressed via the mode,
thereby the top quark could still hide below , whereas the heavy quark
signal observed at the Tevatron is due to the dominantly singlet quark .
This may occur without affecting the small value. Demanding GeV and m_t \ltap M_W, we find that cannot be too
suppressed. The heavy quark decays via , and bosons. The latter
can lead to -tagged jet events, while the strong -- mixing is
reflected in sizable fraction. decay occurs at tree
level and may be at the order, leading to the signature of , all isolated and with large , at order.Comment: 10 pages + 3 Figures (not included), ReVTeX, NTUTH-94-1
Fourth Generation b-prime decays into b + Higgs
If a fourth generation quark exists whose mass is below 255 GeV, then the
only two-body charged current decay, b'-->cW, is doubly-Cabibbo suppressed. For
this reason, CDF has searched for the one-loop neutral current decay b' --> bZ,
assuming that the branching ratio into bZ is 100%; an analysis giving the
bounds on m_b' for smaller branching ratios is in preparation. In this Report,
we examine the neutral current decay b' --> bH, which will occur if the Higgs
mass is less than m_b'-m_b. Four different cases are examined: the sequential
case, the non-chiral isosinglet case, the non-chiral isodoublet case, and a
two-Higgs model with flavor-changing neutral currents. In the first three of
these, the rates for b' --> bZ and b' --> bH are comparable, assuming
comparable phase space factors; in the fourth, b' --> bH is completely
dominant. Thus, we emphasize the importance of giving b' mass bounds as a
function of the branching ratio into bZ, since the assumption of a 100%
branching ratio for b' --> bZ may only be valid if the Higgs mass is near or
above the b' mass.Comment: Minor typos fixed, reference added, sentence changed in experimental
discussion. Conclusions unchange
Critical ace2 determinants of sars-cov-2 and group 2b coronavirus infection and replication
The angiotensin-converting enzyme 2 (ACE2) receptor is a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host range determinant, and understanding SARS-CoV-2-ACE2 interactions will provide important insights into COVID-19 pathogenesis and animal model development. SARS-CoV-2 cannot infect mice due to incompatibility between its receptor binding domain and the murine ACE2 receptor. Through molecular modeling and empirical in vitro validation, we identified 5 key amino acid differences between murine and human ACE2 that mediate SARS-CoV-2 infection, generating a chimeric humanized murine ACE2. Additionally, we examined the ability of the humanized murine ACE2 receptor to permit infection by an additional preemergent group 2B coronavirus, WIV-1, providing evidence for the potential pan-virus capabilities of this chimeric receptor. Finally, we predicted the ability of these determinants to inform host range identification of preemergent coronaviruses by evaluating hot spot contacts between SARS-CoV-2 and additional potential host receptors. Our results identify residue determinants that mediate coronavirus receptor usage and host range for application in SARS-CoV-2 and emerging coronavirus animal model development. IMPORTANCE SARS-CoV-2 (the causative agent of COVID-19) is a major public health threat and one of two related coronaviruses that have caused epidemics in modern history. A method of screening potential infectible hosts for preemergent and future emergent coronaviruses would aid in mounting rapid response and intervention strategies during future emergence events. Here, we evaluated determinants of SARS-CoV-2 receptor interactions, identifying key changes that enable or prevent infection. The analysis detailed in this study will aid in the development of model systems to screen emergent coronaviruses as well as treatments to counteract infections
Bounds on charged higgs boson in the 2HDM type III from Tevatron
We consider the Two Higgs Doublet Model (2HDM) of type III which leads to
Flavour Changing Neutral Currents (FCNC) at tree level. In the framework of
this model we can use an appropriate form of the Yukawa Lagrangian that makes
the type II model limit of the general type III couplings apparent. This way is
useful in order to compare with the experimental data which is model dependent.
The analytical expressions of the partial width are
derived and we compare with the data available at this energy range. We examine
the limits on the new parameters from the validness of
perturbation theory.Comment: 14 pages, 4 figures, Universidad Nacional de Colombia. typos
correcte
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
Novel CP-violating Effects in B decays from Charged-Higgs in a Two-Higgs Doublet Model for the Top Quark
We explore charged-Higgs cp-violating effects in a specific type III
two-Higgs doublet model which is theoretically attractive as it accommodates
the large mass of the top quark in a natural fashion. Two new CP-violating
phases arise from the right-handed up quark sector. We consider CP violation in
both neutral and charged B decays. Some of the important findings are as
follows. 1) Large direct-CP asymmetry is found to be possible for B+- to psi/J
K+-. 2) Sizable D-anti-D mixing effect at the percent level is found to be
admissible despite the stringent constraints from the data on K-anti-K mixing,
b to s gamma and B to tau nu decays. 3) A simple but distinctive CP asymmetry
pattern emerges in decays of B_d and B_s mesons, including B_d to psi/J K_S, D+
D-, and B_s to D_s+ D_s-, psi eta/eta^prime, psi/J K_S. 4) The effect of
D-anti-D mixing on the CP asymmetry in B+- to D/anti-D K+- and on the
extraction of the angle gamma of the unitarity triangle from such decays can be
significant.Comment: 32 pages, 5 figures, section V.A revised, version to appear in PR
CP violation in in the model III 2HDM
We have calculated the Wilson coefficients (i=1,2) in the
renormalization scheme in the model III 2HDM. Using the obtained
Wilson coefficients, we have analyzed the CP violation in decays (q=d,s) in the model. The CP asymmetry, , depends on the
parameters of models and in can be as large as 40% and
35% for and respectively. It can reach 4% for decays.
Because in SM CP violation is smaller than or equal to O() which is
unobservably small, an observation of CP asymmetry in the decays would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure
High Energy FCNC search through Colliders
We study the potential impacts of a new type of particle collider -- an
collider -- on the search for new physics beyond the Standard Model. As
our first attempt for exploring its physics potential, we demonstrate that the
the collision experiment can be highly efficient in searching for
lepton-number-violating Flavor Changing Neutral Current phenomena.Comment: 11 pages, including 2 e-postscript figures, title & abstract are
changed, minor modifications in the main tex
Charmless hadronic decays and new physics effects in the general two-Higgs doublet models
Based on the low-energy effective Hamiltonian with the generalized
factorization, we calculate the new physics contributions to the branching
ratios of the two-body charmless hadronic decays of and mesons
induced by the new gluonic and electroweak charged-Higgs penguin diagrams in
the general two-Higgs doublet models (models I, II and III). Within the
considered parameter space, we find that: (a) the new physics effects from new
gluonic penguin diagrams strongly dominate over those from the new -
and - penguin diagrams; (b) in models I and II, new physics contributions
to most studied B meson decay channels are rather small in size: from -15% to
20%; (c) in model III, however, the new physics enhancements to the
penguin-dominated decay modes can be significant, , and
therefore are measurable in forthcoming high precision B experiments; (d) the
new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in
model III, , and hence provide a simple and plausible new
physics interpretation for the observed unexpectedly large B \to K \etap
decay rates; (e) the theoretical predictions for and
in model III are still consistent with the data
within errors; (f) the significant new physics enhancements to the
branching ratios of and decays are helpful to improve the
agreement between the data and the theoretical predictions; (g) the theoretical
predictions of in the 2HDM's are generally
consistent with experimental measurements and upper limits ()Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections,
final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4
Muon anomalous magnetic moment in the standard model with two Higgs doublets
The muon anomalous magnetic moment is investigated in the standard model with
two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all
the effective Yukawa couplings become complex. As a consequence of the non-zero
phase in the couplings, the one loop contribution from the neutral scalar
bosons could be positive and negative relying on the CP phases. The
interference between one and two loop diagrams can be constructive in a large
parameter space of CP-phases. This will result in a significant contribution to
muon anomalous magnetic moment even in the flavor conserving process with a
heavy neutral scalar boson ( 200 GeV) once the effective muon Yukawa
coupling is large (). In general, the one loop contributions
from lepton flavor changing scalar interactions become more important. In
particular, when all contributions are positive in a reasonable parameter space
of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation
can be easily explained even for a heavy scalar boson with a relative small
Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54
(2001) 11501
- …