6 research outputs found

    Multi-Choice Minority Game

    Full text link
    The generalization of the problem of adaptive competition, known as the minority game, to the case of KK possible choices for each player is addressed, and applied to a system of interacting perceptrons with input and output units of the type of KK-states Potts-spins. An optimal solution of this minority game as well as the dynamic evolution of the adaptive strategies of the players are solved analytically for a general KK and compared with numerical simulations.Comment: 5 pages, 2 figures, reorganized and clarifie

    Phase variance of squeezed vacuum states

    Get PDF
    We consider the problem of estimating the phase of squeezed vacuum states within a Bayesian framework. We derive bounds on the average Holevo variance for an arbitrary number NN of uncorrelated copies. We find that it scales with the mean photon number, nn, as dictated by the Heisenberg limit, i.e., as n−2n^{-2}, only for N>4N>4. For N≤4N\leq 4 this fundamental scaling breaks down and it becomes n−N/2n^{-N/2}. Thus, a single squeezed vacuum state performs worse than a single coherent state with the same energy. We find the optimal splitting of a fixed given energy among various copies. We also compute the variance for repeated individual measurements (without classical communication or adaptivity) and find that the standard Heisenberg-limited scaling n−2n^{-2} is recovered for large samples.Comment: Minor changes, version to appear in PRA, 8 pages, 2 figure
    corecore