76 research outputs found

    Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

    Get PDF
    Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO center dot B2O3 or 9CaO center dot 3B(2)O(3)center dot CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO center dot 2Al(2)O(3) as the dominant crystalline phase, and rod-like 2CaO center dot B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO center dot Al2O3 precipitates after CaF2 and 3CaO center dot 2SiO(2) formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.ope

    Domain-driven Probabilistic Analysis of Programmable Logic Controllers

    Get PDF
    Abstract. Programmable Logic Controllers are widely used in industry. Reliable PLCs are vital to many critical applications. This paper presents a novel symbolic approach for analysis of PLC systems. The main components of the approach consists of: (1) calculating the uncertainty characterization of the PLC systems, (2) abstracting the PLC system as a Hidden Markov Model, (3) solving the Hidden Markov Model using domain knowledge, (4) integrating the solved Hidden Markov Model and the uncertainty characterization to form an integrated (regular) Markov Model, and (5) harnessing probabilistic model checking to analyze properties on the resultant Markov Model. The framework provides expected performance measures of the PLC systems by automated analytical means without expensive simulations. Case studies on an industrial automated system are performed to demonstrate the effectiveness of our approach
    corecore