9 research outputs found

    Resolution in Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra

    Full text link
    The paper introduces a propositional linguistic logic that serves as the basis for automated uncertain reasoning with linguistic information. First, we build a linguistic logic system with truth value domain based on a linear symmetrical hedge algebra. Then, we consider G\"{o}del's t-norm and t-conorm to define the logical connectives for our logic. Next, we present a resolution inference rule, in which two clauses having contradictory linguistic truth values can be resolved. We also give the concept of reliability in order to capture the approximative nature of the resolution inference rule. Finally, we propose a resolution procedure with the maximal reliability.Comment: KSE 2013 conferenc

    Correction: “The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms” Leukemia. 2022 Jul;36(7):1720–1748

    Get PDF

    Multiplicity and Dialogue in Social Psychology: An Essay in Metatheorizing

    No full text

    Mouse Chromosome 12

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore