559 research outputs found

    5-HT6 antagonism attenuates cue-induced relapse to cocaine seeking without affecting cocaine reinforcement

    Get PDF
    Re-exposure to drug-related cues elicits drug-seeking behaviour and relapse in humans even after months of abstinence. Similarly, in laboratory rats, drug-associated stimuli reinstate cocaine seeking after prolonged withdrawal periods, thus providing a model to study mechanisms underlying cocaine relapse. 5-HT6 receptors (5-HT6Rs) are abundantly expressed in brain areas such as the nucleus accumbens and prefrontal cortex, which are critically involved in cocaine reinforcement and relapse. Nevertheless, the role of 5-HT6Rs in relapse mechanisms has not been investigated. We report here that the 5-HT6R antagonists SB-271046 and Ro-04-6790 significantly attenuate cue-induced cocaine seeking. However, effective doses of both 5-HT6R antagonists did not affect cocaine self-administration. This indicates that 5-HT6Rs are specifically involved in the secondary reinforcing properties of cocaine, leaving primary reinforcement and ability to perform an operant response unaffected. As such, 5-HT6Rs may represent a novel target for the prevention of relapse to cocaine seeking. © 2010 CINP

    A Rare Cause of Acute Upper Gastrointestinal Hemorrhage

    Get PDF
    Acute upper gastrointestinal tract hemorrhage represents a frequent morbidity which can be localized and treated endoscopically. When endoscopic treatment alone is failing, radiological or surgical treatment may be warranted. A case history will be presented regarding a rare cause of intestinal hemorrhage with an extraordinary course of illness

    Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis through MafB

    Get PDF
    Disequilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts is central to many bone diseases. Here, we show that dysregulated expression of translationally controlled isoforms of CCAAT/enhancer-binding protein beta (C/EBPbeta) differentially affect bone mass. Alternative translation initiation that is controlled by the mammalian target of rapamycin (mTOR) pathway generates long transactivating (LAP(*), LAP) and a short repressive (LIP) isoforms from a single C/EBPbeta transcript. Rapamycin, an inhibitor of mTOR signalling increases the ratio of LAP over LIP and inhibits osteoclastogenesis in wild type (WT) but not in C/EBPbeta null (c/ebpbeta(-/-)) or in LIP knock-in (L/L) osteoclast precursors. C/EBPbeta mutant mouse strains exhibit increased bone resorption and attenuated expression of MafB, a negative regulator of osteoclastogenesis. Ectopic expression of LAP and LIP in monocytes differentially affect the MafB promoter activity, MafB gene expression and dramatically affect osteoclastogenesis. These data show that mTOR regulates osteoclast formation by modulating the C/EBPbeta isoform ratio, which in turn affects osteoclastogenesis by regulating MafB expression
    corecore