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Abstract
Purpose of Review Periodontitis is the inflammation-associated bone loss disease of the alveolar bone that surrounds teeth.
Classically, the emphasis on the etiology of periodontitis has been on the products of periodontal pathogens that lead to an
inflammatory response of the soft tissues of the periodontium, eventually leading to activation of osteoclasts that degrade the
alveolar bone. Until recently, the response of osteocytes that populate the alveolar bone, and that are known for their regulatory
role in bone anabolism and catabolism, has not been addressed.
Recent Findings This review demonstrates that osteocytes play a key contributing role in periodontitis progression in various
experimental mouse and rat periodontitis models. Osteocytes are the key expressing cells of both osteoclast differentiation factor
RANKL as well as osteoblast activity regulator sclerostin. Targeted deletion of RANKL in osteocytes prevents osteoclast
formation, thereby impairing periodontitis, despite the pressure of periodontitis-associated bacteria. Antibodies against the
osteocyte-derived protein sclerostin inhibit and partially revert periodontitis by stimulating bone formation.
Summary Experimental mouse and rat periodontitis models strongly indicate a key role for the bone-encapsulated osteocyte in
understanding periodontitis etiology.
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Introduction

Recent literature has challenged the classical way periodonti-
tis progression is considered, attributing a key role to the os-
teocyte. Thus far, the emphasis of this inflamed gums disease
leading to bone loss has always been on the bacterial pressure
activating the inflammatory compartment, which stimulates
the activation of osteoclasts that ultimately leads to bone loss
[1••, 2•]. This review will modify this view by including the
recently elucidated role of RANKL and sclerostin expressing
osteocytes in the pathogenesis of periodontitis.

Of Mice and Men: a Brief Introduction
into Periodontitis

Periodontitis, the most common bone-erosive disease, with
prevalence in the USA of 46% among adults [3], is an
inflammation-associated disease affecting the tissue that sur-
rounds teeth, the periodontium. It is caused by a deviant dental
bacterial biofilm, ultimately leading to the disease-
characteristic recruitment of osteoclasts and their bone resorb-
ing activity. It is generally considered a complex, multifacto-
rial disease where lifestyle factors, such as smoking and die-
tary habits, and importantly genetic susceptibility, play a role
in its progression and severity [4]. The use of in particular
mouse models for studying the etiology of periodontitis helps
to scale-down this complexity. Mice do not smoke, can be
held on a standardized diet, and inbred strains are available,
thereby circumventing individual genetic differences such as
apparent between humans. Typical mouse experimental peri-
odontitis approaches make use of a standardized exposure of
the gums to periodontitis-associated bacteria such as
Aggrega t ibac t e r ac t i nomyce t emcomi tans (Aa ) ,
Porphyromonas gingivalis (Pg), or Fusobacterium nucleatum
(Fn), or bacterial products such as lipopolysaccharide (LPS).
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Bymaking use of knockout and transgenic approaches, mouse
models are extremely useful in identifying genes that protect
against periodontitis [2•]. In a recent approach unraveling
mouse susceptibility to periodontitis, a genome-wide associa-
tion study was applied to no less than 104 mouse strains with
differing susceptibility to periodontitis. This identified the
Cxcl family as periodontitis susceptibility genes [5].

Cellular Players of Periodontitis Progression: the “Old
View” Without Considering Osteocytes

Mouse studies were valuable in discerning the histological
changes that take place during the progression of the disease.
Mice that were infected with periodontitis-associated bacteri-
um Aa showed progressive bone loss, concomitant with the
first influx of neutrophils [6], followed by a subsequent T
helper 1 and 2 (Th1 and Th2) cellular influx, together with
Th17 cells and at the end of the chronic infection regulatory T
cells (Tregs) [1••]. Studies in human tissues have confirmed
such a sequence of influxes of inflammatory cells.When com-
paring gingivitis, which is considered as the pre-stage of peri-
odontitis without bone loss to the more advanced stage peri-
odontitis, it became apparent that more macrophages and
more plasma cells populate periodontitis lesions [7]. Typical
for periodontitis is the increase in infiltrated connective tissue
(ICT) area, the area that is occupied by immune cells to the
expense of fibroblasts and connective fibers. This area con-
tains more Th17-cells [8] that secrete IL-17, a cytokine that is
typical for advanced periodontitis [6] and that plays a role in
activating osteoclasts [9]. The infiltrated T and B cells have
been reported to express receptor activator of nuclear factor
kappa B ligand (RANKL), which is considered as the key
differentiation factor for osteoclast differentiation [10].
Experimental evidence also showed that the fibroblasts of
the periodontium respond to periodontitis-associated bacteria
by producing large quantities of inflammatory cytokines [11]
and they play a role in leukocyte retention and survival [12],
as well as in osteoclast formation [13].

Together, this inflammatory scene within the soft connec-
tive tissue of the periodontium sets the stage for activation of
osteoclast precursors, where inflammatory cytokines such as
IL-1β [14] and TNF-α [15] will enhance osteoclast formation
and activity. However, this view does not take into account the
recent appraisal of the osteocyte as a major RANKL produc-
ing cell [16, 17]. RANKL is the key osteoclast differentiation
factor discovered some 20 years ago [18] that has boosted the
field of osteoclast biology. Also, the classical view of histo-
logical changes during periodontitis does not consider the os-
teocyte as producer of the bone formation inhibitory protein
sclerostin that inhibits the Wnt-signaling pathway [19, 20].
Below, the recently discovered role of osteocytes as cellular
players in periodontitis progression is discussed, highlighting
both the RANKL and the sclerostin pathway.

RANKL Expressing Osteocytes and Periodontitis

During experimental periodontitis, RANKL can be detect-
ed at the protein level in osteocytes of alveolar bone,
where the percentage of RANKL-expressing osteocytes
increases, especially during early stages (days 1–3), in
line with a similar induction of osteoclasts. During later
stages (days 10 and 20), the percentage of RANKL-
expressing osteocytes decreases together with the number
of osteoclasts [21]. This upregulation of RANKL in vivo
could be under the direct influence of bacterial products
such as LPS that may penetrate the periodontium as deep
as the alveolar bone containing osteocytes (Fig. 1a). A
recent study showed that LPS upregulates RANKL ex-
pression in an osteocyte-like cell line, MLO-Y4 [23].
Since the DMP-1 promoter is relatively specific to osteo-
cytes, deletion of RANKL can be targeted specifically in
osteocytes, using conditional deletion of floxed RANKL
by Cre recombinase. It is important to note that this con-
ditional RANKL model displayed growth retardation and
osteopetrosis, indicating a specific role of osteocyte-
induced RANKL in bone remodeling [16, 17]. However,
unlike the germ-line knockout [18], tooth eruption took
place and also the femurs of the osteocyte-conditional
knockout displayed normal shaped femurs. Therefore,
the role of osteocyte-derived RANKL could be much lim-
ited to mechanical stress-induced bone remodeling [29].
Periodontitis was induced in wild-type mice and in mice
lacking RANKL only in osteocytes by inoculating a mix-
ture of two periodontitis-associated pathogens, Pg and Fn
three times a week for 2 weeks. Histological analysis re-
vealed that RANKL was induced in alveolar bone osteo-
cytes of wild-type mice and not in alveolar bone osteo-
cytes of the RANKL Cre mice. Strikingly, no periodonti-
tis developed in the osteocyte-specific RANKL-deleted
mice, concomitant with no increase in osteoclast number
or eroded surfaces. In contrast, wild-type mice exposed to
the periodontitis-associated bacteria mixture presented
with severe alveolar bone loss, increased osteoclast num-
bers, and eroded surfaces [24••]. These results clearly
demonstrate the pivotal role of RANKL-expressing oste-
ocytes in periodontitis progression. Targeting osteocytes’
RANKL expression locally could therefore be an ap-
proach to interfere with periodontitis progression. Since
RANKL is upregulated by inflammatory factor tumor ne-
crosis factor-α (TNF-α), which is upregulated in
inflammation-associated diseases such as periodontitis,
Kim et al. [30] injected diabetic and non-diabetic rats with
infliximab, a TNF-α antagonist. Periodontitis was initiat-
ed by ligature application to the gums, hereby facilitating
a periodontal infection. Rats developed alveolar bone loss,
but less so in animals that received infliximab. In parallel,
fewer alveolar bone osteocytes were RANKL positive and
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fewer osteoclasts formed at alveolar bone surfaces [30].
These studies demonstrate a catabolic role for osteocytes:
they express RANKL, when modulated with anti-
inflammatory drugs; RANKL is diminished and knockout
of RANKL specifically in osteocytes even abolished
periodontitis.

Alveolar Bone Osteocytes, Sclerostin,
and Periodontitis

The elucidation of the key players of the Wnt-signaling path-
way that results in bone formation opens avenues to specifi-
cally interfere with bone formation. Importantly, under normal
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Fig. 1 Role of osteocyte produced RANKL and sclerostin in
periodontitis. This cartoon, based on experimental periodontitis studies
in rats and mice, emphasizes the role of osteocytes in periodontitis
progression. For simplification purposes, this schematic is devoid of
immune cells that invade the periodontium and that also play an
indispensable role for understanding the etiology of periodontitis. a, c
Sclerostin [22] and bacterial products such as LPS [23] may increase
osteocyte RANKL expression. RANKL produced by osteocytes could
be a main contributor of periodontitis progression [24••]. b, d Inhibition
of osteocyte RANKL and sclerostin induces bone formation [25, 26••,

27•, 28], which leads to increased alveolar bone volume, or even a
reversal of degraded alveolar bone [26••, 27•, 28]. It is unclear whether
this new bone will be firmly connected to teeth through new Sharpey’s
fibers, indicated with red fibers and a question mark. c A schematic
representation of osteocyte-driven RANKL and sclerostin expression,
driving the differentiation of osteoclast precursors into osteoclasts. d
When both RANKL and sclerostin are inhibited, osteogenic stem cells
lining alveolar bone at the periodontal ligament may differentiate into
osteoblasts [26••] that produce osteoid, which will turn into bone
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circumstances, alveolar bone osteocytes express the inhibitor
of Wnt- signaling, sclerostin, transcribed from the SOST gene
[31]. Sclerostin binds to the extracellular domain of LRP5/6
blocking the formation of the LRP/Wnt/Frizzled complex
[32], therefore inhibiting the canonical Wnt-signaling path-
way, which has a crucial role in the differentiation and activa-
tion of osteoblasts [19, 20]. Additionally, sclerostin exerts a
catabolic effect on bone via the modulation RANKL/OPG
ratio in osteocytes [22, 33], although the specific pathway
has yet to be defined. Strategies to neutralize sclerostin, for
instance with clinically tested romosozumab, an anti-
sclerostin antibody, hold promise for treatment of osteoporosis
[25]. Within periodontal tissues, sclerostin is expressed in os-
teocytes as well as cementocytes [34]. The sclerostin knock-
out mouse exhibits a mild periodontal phenotype, with no
alterations in teeth and a smaller periodontal ligament width
due to enlarged cellular cementum [35]. When inducing peri-
odontitis, the sclerostin knockout mice were slightly protected
compared to wild-type mice [36]. Knockout of periostin, a
structural component of the periodontium, leads to periodon-
titis due to structural anatomical deviation [37]. These mice
were treated with either a viral construct knocking down
sclerostin or with a sclerostin neutralizing antibody.
Knockdown of sclerostin not only restored alveolar bone
height, but also improved the disorganized orientation of the
periodontal ligament in these mice [26••]. Similar results were
obtained in a periodontitis rat model, using silk sutures around
molar to induce periodontitis. These rats developed periodon-
titis within 4 weeks and after removal of the silk sutures,
animals were treated with an antibody against sclerostin.
Alveolar bone quality improved and original alveolar loss
recovered in the treated group [27•]. Locally administered
sclerostin antibody induced limited regeneration of the alveo-
lar bone but this lower effect was attributed to the inability to
introduce a sufficient concentration of the antibody. It is the-
orized that more sophisticated methods of drug delivery to the
alveolar bone would increase the efficacy of local treatment in
periodontitis [27•]. Independently, Chen et al. showed that
treatment of periodontitis-induced rats with sclerostin anti-
body protected alveolar bone and increased the expression
of osteoprotegerin (OPG) [28]. One of the risk factors for
using anti-resorptive treatment using either bisphosphonates
or anti-RANKL antibody denosumab is osteonecrosis of the
jaw [38]. In a study comparing the clinically relevant doses of
the sclerostin antibodywith bisphosphonates in an experimen-
tal periodontitis rat model after ovariectomy, no osteonecrosis
developed and also less alveolar bone was lost [39].
Furthermore, all bone anabolic parameters improved after
sclerostin antibody treatment [39]. Progressive periodontitis
eventually leads to tooth loss, hereby solving the chronic in-
flammation. Lost teeth can be replaced by implants, which can
only be placed when the jawbone has enough height. Liu et al.
have administered antibodies to sclerostin in edentulous rats.

Rats with extracted teeth that received anti-sclerostin devel-
oped a thicker maxillary alveolar ridge height [40]. Since anti-
sclerostin improves the periodontal status and RANKL
expressed by osteocytes causes periodontitis, it could be that
sclerostin influences RANKL and thereby the catabolic nature
of osteocytes. This was tested on the MLO-Y-4 cell line that
expressed more RANKL when treated with increasing con-
centrations of sclerostin. Also, sclerostin treated MLO-Y4
cells gave rise to more osteoclasts in osteoclastogenesis assays
that were more actively resorbing [22]. Vice versa, osteoclasts
may influence the expression of sclerostin in osteocytes. An
Opg −/− mouse model was used to study coupling, the rela-
tionship between bone formation and bone degradation. Here,
conditioned medium from osteoclasts lowered sclerostin ex-
pression in osteocytes. Anti-resorptive agents and anti-
RANKL-induced sclerostin [33].

Clinical Relevance of Detecting Sclerostin and RANKL
in Crevicular Fluid of Periodontitis Patients

Sclerostin, the osteocyte-expressed and secreted inhibitor of
bone formation, can also be found at higher levels in the cre-
vicular fluid from periodontitis patients and could be a more
reliable measure for diagnosis or prognosis of disease than
RANKL [41]. Also in serum or in gingival biopsies, sclerostin
was increased in chronic periodontitis patients [42]. Higher
levels of sclerostin were also reported in the peri-implant cre-
vicular fluid in patients with peri-implantitis [43].

Conclusions

In brief, it can be concluded that osteocytes play a role in
periodontitis through the expression of RANKL and
sclerostin. These findings are summarized in Fig. 1.
Experimental evidence shows that bacterial products such as
LPS can enhance RANKL expression of osteocytes.
Sclerostin itself acts as positive feedback for RANKL expres-
sion. The effect of a bacterial infection on sclerostin expres-
sion is still unknown.

It is remarkable that osteocyte-specific RANKL deletion
completely blocks periodontitis [24••]. Since no osteoclasts
are formed, this may seem logical. But, taking it a bit further,
it could suggest a role for osteoclasts in attracting leukocytes
to the soft periodontium. It is known that osteoclasts on bone
secrete high levels of IL-1β [44], but other leukocyte
attracting cytokines could also be secreted by the osteoclast.
Therefore, osteocyte-expressed RANKL could well be the
beginning of periodontitis progression, through the formation
of initial osteoclasts that may attract leukocytes. In recent
years, it has become more and more evident that osteoclasts
play roles not only as bone degraders [45], but also in
preparing the hematopoietic niche [46, 47]. Likewise, it is
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conceivable that they could be involved in attracting
immune cells to the inflammatory environment of the
periodontium.

Although hardly considered in clinical periodontitis stud-
ies, anti-inflammatory agents such as anti-TNF-α infliximab,
used in for instance rheumatoid arthritis, were shown to have a
stabilizing effect on the periodontal status of patients [48]. It
would be worthwhile in future studies with anti-RANKL
denosumab and anti-sclerostin romosozumab [25] to compare
periodontal status before and after use of these reagents. Based
on our new knowledge on osteocyte-produced proteins and
their new role in periodontitis, it would not be surprising when
the use of denosumab and romosozumab would have a stabi-
lizing effect on the periodontal status of patients.
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