10 research outputs found
Recommended from our members
Importance of early season conditions and grazing on carbon dioxide fluxes in Colorado shortgrass steppe
Understanding the influence of grazing management and environmental drivers on net ecosystem exchange of CO2 (NEE) is essential for optimizing carbon (C) uptake in rangelands. Herein, using 15 treatment-years (two 3-yr experiments, one with three grazing treatments, the other two) and Bowen ratio flux towers, we evaluated the influence of grazing intensity, soil water content (SWC), and plant cover (Normalized Difference Vegetation Index, or NDVI) on NEE in Colorado shortgrass steppe. Among several soil water and plant cover traits evaluated over 6-yr, early season (April, DOY 91-120) SWC and early season (DOY 130) NDVI weremost highly correlated with NEE (-0.96 and-0.98, respectively) during the second quarter (April to June) of the year and also over the entire growing season (April to September;-0.97 and-0.96). Due to the strong effect of early-season SWC, an average of 166 gm-2 CO2 were lost in 2 yr with dry spring weather, compared with an average annual uptake of 218 g m-2 CO2 in 4 yr with more abundant early-season precipitation and plant cover. Grazing effects on NEE were also apparent. In one experiment, moderate grazing resulted in annual CO2 uptake of 267 g m-2 CO2 over 3 yr compared with essentially zero NEE in heavily grazed pasture. However, that treatment difference in annual NEEwas only half that experienced between dry and wet years. Similar trends were observed in a second experiment, although results were insignificant. Results suggest that the recommended moderate grazing intensity for the Colorado shortgrass steppe is near optimal for CO2 uptake under season-long continuous grazing, with annual climatic variability sometimes being more influential. To enhance C sequestration in the western Great Plains of North America, grazing management strategies should emphasize flexible and adaptive practices that consider early-season SWC and promote vegetation cover during the key early spring growth period. © Published by Elsevier Inc. on behalf of The Society for Range Management.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information
Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements
Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (a=75 mmol·mol-1), photosynthetic capacity (Amax=3.4 mg CO2·m-2·s-1), gross photosynthesis (Pg,max=116 g CO2·m-2·d-1), and ecological light-use efficiency (ecol=59 mmol·mol-1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8600 g CO2·m-2·yr-1), total ecosystem respiration (7900 g CO2·m-2·yr-1), and net CO2 exchange (2400 g CO2·m-2·yr-1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2·m-2·yr-1 for intensive grasslands and 933 g CO2·m-2·d-1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stoc
Productivity and CO2 Exchange of Great Plains Ecoregions. I. Shortgrass Steppe: Flux Tower Estimates
The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 - 2007 flux tower measurements at five Bowen ratio-energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 < α < 51 mmol mol-1, 0.48 < Amax < 2.1 mg CO2 m-2 s-1, 0.15 < rd < 0.49 mg CO2 m-2 s-1). Gross photosynthesis varied from 1 100 to 2 700 g CO2 m-2 yr-1, respiration from 900 to 3,000 g CO2 m-2 yr-1, and net ecosystem production from - 900 to + 700 g CO2 m-2 yr-1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004-2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology. © 2017 The Authors. Published by Elsevier Inc. on behalf of The Society for Range Management.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information
Land Use/Cover Change and its Impact on Net Primary Productivity in Huangfuchuan Watershed Temperate Grassland, China
This study take the Huangfuchuan Watershed temperate grassland as the study area, RS and GIS techniques are used to explore the relationship between LUCC and NPP. With the combination of CASA model, the dynamic characteristics of NPP in 1987-2011 are studied. The main conclusions are as follows: (1) land use structure changes obviously in Huangfuchuan Watershed. The main trend of land use change was the gradual increase of construction land and woodland, the gradual decrease of water. Arable land, grass, shrub, bare rock and sand were fluctuant. It could be seen from land use dynamic degree. (2) Through the calculation of NPP model, the total value of NPP in 1987, 1995, 2000, 2007 and 2011 was 28.12GgC, 53.47GgC, 73.23GgC, 157.92GgC and 78.52GgC. (3) Through the analysis of land use change effects on NPP, it indicates the main reason for the increase of NPP is due to grassland transfer to shrub between 1987 and 1995. The decade of bare rock is the main reason for the increase of NPP in 1995-2000. Shrub transferring to grassland is the main reason for the increase of NPP in 2000-2007. Grassland transferring to shrub is the main reason for the reduction of NPP in 2007-2011. The results of the study is very meaningful for rational using of temperate grassland resources and improvement of the fragile ecological environment