5 research outputs found

    Taxonomy of Tricholoma in northern Europe based on ITS sequence data and morphological characters

    Get PDF
    Based on molecular and morphological data we investigated the taxonomy and phylogeny of the ectomycorrhizal genus Tricholoma in northern Europe. Our phylogenetic tree confirmed the presence of at least 72 well circumscribed species within the region. Of these, three species, viz. T. boreosulphurescens, T. bryogenum and T. ilkkae are described as new to science, based on morphological, distributional, ecological and molecular data. Several other terminal branches represent putative cryptic taxa nested within classical species or species groups. Molecular type studies and/or designation of sequenced neotypes are needed in these groups, before the taxonomy can be settled. In general our phylogenetic analysis supported previous suprageneric classification systems, but with some substantial changes. Most notably, T. virgatum and allies were found to belong to sect. Tricholoma rather than sect. Atrosquamosa, while T. focale was found to be clearly nested in sect. Genuina rather than in sect. Caligata. In total, ten sections are accepted, with five species remaining unassigned. The combination of morphological and molecular data showed pileus colour, pileipellis structure, presence of clamp connections and spore size to be rather conservative characters within accepted sections, while the presence of a distinct ring, and especially host selection were highly variable within these

    The largest type study of Agaricales species to date: bringing identification and nomenclature of Phlegmacium (Cortinarius) into the DNA era

    No full text
    Cortinarius is a species-rich and morphologically challenging genus with a cosmopolitan distribution. Many names have not been used consistently and in some instances the same species has been described two or more times under separate names. This study focuses on subg. Phlegmacium as traditionally defined and includes species from boreal and temperate areas of the northern hemisphere. Our goals for this project were to: i) study type material to determine which species already have been described; ii) stabilize the use of Friesian and other older names by choosing a neo- or epitype; iii) describe new species that were discovered during the process of studying specimens; and iv) establish an accurate ITS barcoding database for Phlegmacium species. A total of 236 types representing 154 species were studied. Of these 114 species are described only once whereas 40 species had one ore more synonyms. Of the names studied only 61 were currently represented in GenBank. Neotypes are proposed for 21 species, and epitypes are designated for three species. In addition, 20 new species are described and six new combinations made. As a consequence ITS barcodes for 175 Cortinarius species are released

    Arbuscular mycorrhizal fungal communities of pristine rainforests and adjacent sugarcane fields recruit from different species pools

    No full text
    Deforestation of the Atlantic rainforest in Brazil and its conversion into sugarcane fields, pose a serious threat to the local biodiversity. The change in land use affects not only macro-organisms, but also microbial communities such as the obligate symbiotic arbuscular mycorrhizal fungi (AMF). We characterized AMF communities along 200-m transects from native forests and into sugarcane fields. Meta-barcoding, and subsequent community and network analyses were used to illustrate the distribution of communities along the transects. Conversion of forest into sugarcane fields did not change alpha diversity, but resulted in a biotic homogenization of the communities. The communities in the sugarcane field was not a subset of the forest community, but recruited taxa from other unsampled species pools. We found a peak in richness in the transition zones which suggests that the AMF community admix across the border. A difference in nestedness and high turnover among transects indicate that forest AMF are locally specialized and have a restricted geographical range.The Usina São José S.A./Grupo Cavalcanti Petribú kindly allowed access to their properties and supported fieldwork logistically. ALG was supported by European Union's Horizon 2020 Marie Curie Individual Fellowship (Grant number: 708530 – DISPMIC). LCM was supported by Conselho Nacional de Pesquisas (CNPq grant numbers: 446144/2014-2, 307129/2015-2, and 306880/2020-2). We gratefully acknowledge the kindly information provided by Ana Carolina B. Lins-e-Silva about the forest patches. The authors are thankful to Iolanda R. da Silva and Márcio Pereira for helping during the field trip and sampling
    corecore