5 research outputs found

    The Influence Of Rigid And Flexible Monomers On The Physical-chemical Properties Of Polyimides

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)This article presents the synthesis and characterization of polyimides and copolyimides derived from rigid [4,40-(9-fluorenylidene)dianiline (FNDA) and 3,30,4,40-biphenyltetracarboxylic dianhydride (BPDA)] and flexible segments [4,40-(1,3-phenylenedioxy) dianiline (PDODA) and ethylenediaminetetraacetic dianhydride (EDTAn)], by polyaddition followed by thermal imidization of the polyamic acid. It describes the characterization of the polyimides and the polyamic acids in accordance to 1H NMR, FTIR, GPC, and XRD analysis, as well as solubility, mechanical (DMTA and stress-strain tests), thermal (DSC and TGA), and electric properties. Among the homopolymers, FNDA-BPDA and PDODA-BPDA form free-standing films. The first presents higher Tg, thermal stability and Young's modulus. To tailor the properties copolyimides of FNDA, PDODA, and BPDA were synthesized. Young's modulus, Tg, thermal stability, dielectric constant, and solubility progressively increase with increasing amount of FNDA.131242010/ 17804-7; FAPESP; São Paulo Research Foundation; 2010/02098-0; FAPESP; São Paulo Research Foundation; 2010/18268-1; FAPESP; São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Cantor, B., Grant, P., Assender, H., (2001) Aerospace Materials, p. 1. , Taylor & Francis: LondonLing, Q., Liaw, D., Zhu, C., Chan, D.S., Kang, E., Neoh, K., (2008) Prog. Polym. Sci., 33, p. 917Liaw, D., Wang, K., Huang, Y., Lee, K., Lai, J., Ha, C., (2012) Prog. Polym. Sci., 37, p. 907Sroog, C.E., (1991) Prog. Polym. Sci., 16, p. 561Jacobs, J.D., Arlen, M.J., Wang, D.H., Ounaies, Z., Berry, R., Tan, L., Garrett, P.H., Vaia, R.A., (2010) Polymer, 24, p. 3139Deligoz, H., Ozgumus, S., Yalcinyuva, T., Yildirim, S., Deger, D., Ulutas, K., (2005) Polymer, 46, p. 3720Conceicao, T.F., Scharnagl, N., Blawert, C., Dietzel, W., Kainer, K.U., (2011) Corros. Sci., 52, p. 2066Conceicao, T.F., Scharnagl, N., Dietzel, W., Kainer, K.U., (2010) Corros. Sci., 52, p. 3155Conceicao, T.F., Scharnagl, N., Dietzel, W., Kainer, K.U., (2011) Corros. Sci., 53, p. 338Ghosh, A., Sen, S.K., Banerjee, S., Voit, B., (2012) RSC Adv., 2, p. 5900Rata, V., Stancik, E.D., Ayambem, A., Pavaatareddy, H., McGrath, J.E., Wilkes, G.L., (1999) Polymer, 40, p. 1889Srinivas, S., Caputo, F.E., Graham, M., Gardner, S., Davis, R.M., McGrath, J.E., Wilkes, G.L., (1997) Macromolecules, 30, p. 1012Seo, J., Cho, K., Han, H., (2001) Polym. Degrad. Stab., 74, p. 133An, H., Zhan, M., Wang, K., (2011) Polym. Eng. Sci., 51, p. 1533Ding, Y., Bikson, B., Nelson, J.K., (2002) Macromolecules, 35, p. 905Facinelli, J.V., Gardner, S.L., Dong, L., Sensenich, C.L., Davis, R.M., Riffle, J.S., (2006) Macromolecules, 29, p. 7342Araujo, A.C.V., Oliveira, R.J., Junior, A.S., Rodrigues, A.R., Machado, F.L.A., Cabral, F.A.O., Azevedo, W.M., (2010) Synth. Met., 160, p. 685Mohan, J., (2002) Organic Spectroscopy: Principles and Applications, p. 1. , 2nd ed. Alpha Science International: HarrowZhang, T.M.S., Li, Y., Yang, F., Gong, C., Zhao, J., (2010) Polym. Degrad. Stab., 95, p. 1244Yang, C.P., Chen, R.S., Hung, K.S., (2001) Polymer, 42, p. 4569Lee, T., Park, S.S., Jung, Y., Han, S., Han, D., Kim, I., Há, C.S., (2009) Eur. Polym. J., 45, p. 19Ruiz, J., Mantecon, A., Cadiz, V., (2001) Polymer, 42, p. 6347Padavan, D.T., Wan, W.K., (2010) Mater. Chem. Phys., 124, p. 427Saimani, S., Kumar, A., Dal-Cin, M.M., Robertson, G., (2011) J. Membr. Sci., 374, p. 102Shang, X., Fang, S., Meng, Y., (2007) J. Membr. Sci., 297, p. 90Li, B., Liu, T., Zhong, W.H., (2012) Polymer, 52, p. 5186Kazama, S., Teramoto, T., Haraya, K., (2002) J. Membr. Sci., 207, p. 91Diaham, S., Locatelli, M.L., Lebey, T., Malec, D., (2011) Thin Solid Films, 519, p. 1851Venkat, N., Dang, T.D., Bai, Z., McNier, V.K., DeCerbo, J.N., Tsao, B.H., Stricker, J.T., (2010) Mater. Sci. Eng. B: ADV, 168, p. 1

    Improvement Of Processing And Mechanical Properties Of Polyetherimide By Antiplasticization With Resorcinol Bis(diphenyl Phosphate)

    No full text
    This article describes the antiplasticization of a commercial polyetherimide ULTEM® series 1000 [poly(bisphenol A-co-4-nitrophthalic anhydride-co-1,3-phenylenediamine) by resorcinol bis(diphenyl phosphate)] (RDP) and its implications on the thermomechanical processing, namely extrusion and injection molding, as well as on the thermal and mechanical properties of the formulations. This antiplasticization effect allows the processing of polyetherimide formulations at lower temperatures in comparison with neat polymer due to the progressive decrease of the glass transition temperature with increased RDP concentration, as observed by differential scanning calorimetry and dynamic mechanical analysis. The decrease of Tg occurs concomitantly with the overlap of the glass transition and β relaxation and with the shift of the γ relaxation to higher temperatures. These changes in the relaxation spectrum of polyetherimide formulations are possibly responsible for the increase of the tensile strength and Young's modulus and changes in the fracture mechanism, as observed by stress-strain tests and by scanning electron microscopy, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40619. Copyright © 2014 Wiley Periodicals, Inc.13116Rahman, M., Brazel, C.S., (2004) Prog. Polym. Sci., 29, p. 1223Rosen, S.L., (1993) Fundamental Principles of Polymeric Materials, p. 97. , Wiley: New YorkWypych, G., (2004) Handbook of Plasticizers, , Chem Tech Publishers: New YorkVieira, M.G.A., Silva, M.A., Santos, L.O., Beppu, M.M., (2011) Eur. Polym. J., 47, p. 254Craver, C.D., Carraher, C.E., (2005) Applied Polymer Science: 21st Century, 9, pp. 157-176. , Elsevier: London, ChapterStukalin, E.B., Douglas, J.F., Freed, K.F., (2010) J. Chem. Phys., 132, p. 84504Anderson, S.L., Grulke, E.A., Delassus, P.T., Smith, P.B., Kocher, C.W., Landes, B.G., (1995) Macromolecules, 28, p. 2944Riggleman, R.A., Douglas, J.F., Pablo, J.J., (2010) Soft Matter, 6, p. 292Riggleman, R.A., Douglas, J.F., Pablo, J.J., (2007) J. Chem. Phys., 126, p. 234903Robeson, L.M., (1969) Polym. Eng. Sci., 9, p. 277Jackson, J.W., Caldwell, J.R., (1967) J. Appl. Polym Sci., 11, p. 211Jackson, J.W., Caldwell, J.R., (1967) J. Appl. Polym. Sci., 11, p. 227Maeda, Y., Paul, D.R., (1987) J. Polym. Sci. B: Polym. Phys., 25, p. 957Ventras, J.S., Duda, J.L., Ling, H.C., (1988) Macromolecules, 21, p. 1470Liu, Y., Roy, A.K., Jones, A.A., Inglefield, P.T., Ogden, P., (1990) Macromolecules, 23, p. 968Belfiore, L.A., Henrichs, P.M., Massa, D.J., Zumbulyadis, N., Rothwell, W.P., Cooper, S.L., (1983) Macromolecules, 16, p. 1744Ranade, A., Wang, H., Hiltner, A., Baer, E., Shirk, J.S., Lepkowicz, R.S., (2003) Polymer, 48, p. 624Miyagawa, A., Korkiatithaweechai, S., Nobukawa, S., Yamaguchi, M., (2013) Ind. Eng. Chem. Res., 52, p. 5048Lee, J.S., Leisen, J., Choudhury, R.P., Kriegel, R.M., Beckham, H.W., Koros, W., (2012) J. Polymer, 53, p. 213Eceolazza, S., Iriarte, M., Uriarte, C., Del Rio, J., Etxeberria, A., (2012) Eur. Polym. J., 48, p. 1218Pittia, P., Sacchetti, G., (2008) Food Chem., 106, p. 1417Chang, Y.P., Cheah, P.B., Seow, C.C., (2000) J. Food Sci., 65, p. 445Chang, Y.P., Karim, A.A., Seow, C.C., (2005) Food Hydrocoll., 20, p. 1Iqbal, T., Briscoe, B.J., Luckham, P.F., (2011) Eur. Polym. J., 47, p. 2244Kinjo, N., Nakagawa, T., (1973) Polym. J., 4, p. 143Guerrero, S.J., (1989) Macromolecules, 22, p. 3480Ghersa, P., (1958) Mod. Plast., 36, p. 135Duda, J.L., Romdhane, I.H., Danner, R.P., (1994) J. Non-Cryst. Solids, pp. 172-174. , 715Ngai, K., Rendell, R.W., Yee, A.F., Plazek, D.J., (1991) Macromolecules, 24, p. 61Rizos, A.K., Petihakis, L., Ngai, K.L., Wu, J., Yee, A.F., (1999) Macromolecules, 32, p. 7921Belana, J., Cañadas, J.C., Diego, J.A., Mudarra, M., Díaz-Calleja, R., Friederichs, S., Jaïmes, C., Sanchis, M., (1998) J. Polym. Intern., 48, p. 11Tan, L.-S., (1999) Polymer Data Handbook, pp. 471-478. , Mark. J. E. Ed.Oxford University Press, Inc.: New YorkSiochi, E.J., Working, D.C., Park, C., Lillehei, P.T., Rouse, J.H., Topping, C.C., Bhattacharyya, A.R., Kumar, S., (2004) Composites B, 3, p. 439Larocca, N.M., Pessan, L.A., (2003) J. Membr. Sci., 218, p. 69Bright, D.A., Dashevsky, S., Moy, P.Y., Williams, B., (1997) J. Vinyl Addit. Technol., 3, p. 170Caroccio, S., Puglisi, C., Montaudo, G., (1999) Macromol. Chem. Phys., 200, p. 2345Amancio-Filho, S.T., Roeder, J., Nunes, S.P., Dos Santos, J.F., Beckmann, F., (2008) Polym. Degrad. Stab., 93, p. 1529Jenkins, M.J., (2000) Polymer, 41, p. 6803Ravi-Chandar, K., Yang, B., (1997) J. Mech. Phys. Solids, 45, p. 535Wenbo, L., Tingqing, Y., (2003) J. Appl. Polym. Sci., 89, p. 1722Du, P., Xue, B., Song, Y., Lu, S., Zheng, Q., Yu, J., (2010) J. Mater. Sci., 45, p. 3088Ravi-Chandar, K., (2004) Dynamic Fracture, , Elsevier: Amsterda

    Magnesium Based Biodegradable Metallic Implant Materials: Corrosion Control and Evaluation of Surface Coatings

    No full text
    corecore