17 research outputs found

    Using Argumentation Logic for Firewall Policy Specification and Analysis

    Get PDF
    Firewalls are important perimeter security mechanisms that imple-ment an organisation's network security requirements and can be notoriously difficult to configure correctly. Given their widespread use, it is crucial that network administrators have tools to translate their security requirements into firewall configuration rules and ensure that these rules are consistent with each other. In this paper we propose an approach to firewall policy specification and analysis that uses a formal framework for argumentation based preference reasoning. By allowing administrators to define network abstractions (e.g. subnets, protocols etc) security requirements can be specified in a declarative manner using high-level terms. Also it is possible to specify preferences to express the importance of one requirement over another. The use of a formal framework means that the security requirements defined can be automatically analysed for inconsistencies and firewall configurations can be automatically generated. We demonstrate that the technique allows any inconsistency property, including those identified in previous research, to be specified and automatically checked and the use of an argumentation reasoning framework provides administrators with information regarding the causes of the inconsistency

    Rare and Common Variants Conferring Risk of Tooth Agenesis

    Get PDF
    We present association results from a large genome-wide association study of tooth agenesis (TA) as well as selective TA, including 1,944 subjects with congenitally missing teeth, excluding third molars, and 338,554 controls, all of European ancestry. We also tested the association of previously identified risk variants, for timing of tooth eruption and orofacial clefts, with TA. We report associations between TA and 9 novel risk variants. Five of these variants associate with selective TA, including a variant conferring risk of orofacial clefts. These results contribute to a deeper understanding of the genetic architecture of tooth development and disease. The few variants previously associated with TA were uncovered through candidate gene studies guided by mouse knockouts. Knowing the etiology and clinical features of TA is important for planning oral rehabilitation that often involves an interdisciplinary approach

    Extended resolution proofs for conjoining BDDs

    No full text
    Abstract. We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.

    Extended Resolution Proofs for Symbolic SAT Solving with Quantification

    No full text
    Abstract. Symbolic SAT solving is an approach where the clauses of a CNF formula are represented using BDDs. These BDDs are then conjoined, and finally checking satisfiability is reduced to the question of whether the final BDD is identical to false. We present a method combining symbolic SAT solving with BDD quantification (variable elimination) and generation of extended resolution proofs. Proofs are fundamental to many applications, and our results allow the use of BDDs instead of—or in combination with—established proof generation techniques like clause learning. We have implemented a symbolic SAT solver with variable elimination that produces extended resolution proofs. We present details of our implementation, called EBDDRES, which is an extension of the system presented in [1], and also report on experimental results.

    Programming a symbolic model checker in a fully expansive theorem prover

    No full text
    Abstract. Model checking and theorem proving are two complementary approaches to formal verification. In this paper we show how binary decision diagram (BDD) based symbolic model checking algorithms may be embedded in a theorem prover to take advantage of the comparatively secure environment without incurring an unacceptable performance penalty.
    corecore