
Open Research Online
The Open University’s repository of research publications
and other research outputs

Using Argumentation Logic for Firewall Policy
Specification and Analysis
Conference or Workshop Item

How to cite:

Bandara, Arosha K.; Kakas, Antonis; Lupu, Emil C. and Russo, Alessandra (2006). Using Argumentation
Logic for Firewall Policy Specification and Analysis. In: Lecture Notes in Computer Science, 4269 pp. 185–196.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/11907466
http://www.springerlink.com/content/x3216672753j5744/?p=5984c7458cf34a21b288d3d18dc3b042&pi=15

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82904364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1007/11907466
http://www.springerlink.com/content/x3216672753j5744/?p=5984c7458cf34a21b288d3d18dc3b042&pi=15
http://oro.open.ac.uk/policies.html

Using Argumentation Logic for
Firewall Policy Specification and Analysis

Arosha K Bandara1, Antonis Kakas2, Emil C Lupu1, Alessandra Russo1

1: Department of Computing, Imperial College London, London SW7 2AZ
2: Department of Computer Science, University of Cyprus, Cyprus

{bandara, ack, ecl1, ar3}@doc.ic.ac.uk

Firewalls are important perimeter security mechanisms that implement an
organisation’s network security requirements and can be notoriously difficult to
configure correctly. Given their widespread use, it is crucial that network
administrators have tools to translate their security requirements into firewall
configuration rules and ensure that these rules are consistent with each other. In
this paper we propose an approach to firewall policy specification and analysis
that uses a formal framework for argumentation based preference reasoning.
By allowing administrators to define network abstractions (e.g. subnets,
protocols etc) security requirements can be specified in a declarative manner
using high-level terms. Also it is possible to specify preferences to express the
importance of one requirement over another. The use of a formal framework
means that the security requirements defined can be automatically analysed for
inconsistencies and firewall configurations can be automatically generated. We
demonstrate that the technique allows any inconsistency property, including
those identified in previous research, to be specified and automatically checked
and the use of an argumentation reasoning framework provides administrators
with information regarding the causes of the inconsistency.

1. Introduction

Firewalls are widely used perimeter security mechanisms that filter packets based on
a set of configuration rules that are derived from the organisation’s network security
requirements. The rules are specified in priority order and are of the form:

 <order> : <action> if <network conditions>

where the <network conditions> identify a certain type of traffic, typically from
one domain to another under some protocol, and the action field, <action>, typically
takes the values “allow” or “deny” thus specifying if the traffic is to be allowed to
flow or stopped. The semantics of the firewall policy is given operationally and it is
crucially dependent on the total ordering of its rules. The ordering position of a rule is
given by a (unique) number in <order> and for a given packet the firewall will check
the rules in ascending order. The action field of the first rule whose network
conditions are satisfied by the packet determines if it will be allowed or blocked. All
subsequent rules are ignored.

 In this paper we propose a technique for specifying security requirements within
an argumentation based framework for Logic Programming with Priorities (LPP).

2 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

This allows us to specify and use high-level abstractions for network entities, e.g.
protocols, applications, sub-networks. It also allows us to specify relative ordering
between security requirements. The framework supports automatic generation of
firewall configuration rules that satisfy the requirements including the relative
ordering. Additionally, we demonstrate that the framework can detect a range of
inconsistencies, including the anomaly types identified by Al-Shaer and Hamed [1],
and also perform anomaly resolution.

Figure 1 shows an example system taken from [1] where a firewall is used to
protect hosts in an enterprise network (acme.com) from malicious network traffic
together with the set of rules that control the behaviour of the firewall. In this
example, Rules 8 and 11 implement the default security requirement that all traffic
should be blocked unless there is a specific requirement to allow specific types of
traffic. These exception cases to the default requirement are implemented by
specifying firewall policy rules that have a higher priority ordering than the default
policy rule. For example, Rule 7 implements the requirement to “allow FTP
connections from hosts in the coyote.com network to the host ftp.acme.com” and Rule
1 and 2 to “allow all HTTP requests from coyote.com to acme.com except those from
the host wiley.coyote.com”.

INTERNET
..*.*

acme.com
161.120.33.*

coyte.com
140.192.37.*

wiley
140.192.37.20

tricky
140.192.37.30

161.120.33.40
fudd

blockany*.*.*.*any*.*.*.*udp11

allow53161.120.33.40any*.*.*.*udp10

allow53161.120.33.40any140.192.37.*udp9

blockany*.*.*.*any*.*.*.*tcp8

allow21161.120.33.40any140.192.37.*tcp7

allow21*.*.*.*any140.192.37.*tcp6

block21*.*.*.*any140.192.37.30tcp5

block80161.120.33.40any140.192.37.*tcp4

allow80161.120.33.40any*.*.*.*tcp3

allow80*.*.*.*any140.192.37.*tcp2

block80*.*.*.*any140.192.37.20tcp1

ActionDst PortDst IPSrc PortSrc IPPtrclOrder

Fig. 1. Example network and associated firewall policy rules [1]

In this example, the translation of these requirements into the rules shown is done
manually and depends on administrators’ knowledge of the low-level network
topology and protocols and also having the expertise to assign the correct priority
order to the rules. This method of policy specification has the added disadvantage
that no link is maintained between the security requirements and the policy rules that
implement them. This makes policy specifications hard to understand and it is easy
for the administrator to make errors, particularly when dealing with large distributed
systems that involve many networks, hosts and applications. Some firewall solution
vendors have made an attempt to support high-level abstractions by mapping named

Using Argumentation Reasoning for Firewall Policy Specification and Analysis 3

traffic classes to low-level properties such as host IP addresses, port numbers and
protocols [2]. However, this process involves a significant amount of manual effort
on the part of the administrator and the tools provided do not maintain any link
between the security requirements and the underlying policy rules.

Another shortcoming with existing approaches to firewall policy specification is
the limited support for automated analysis that verifies that the specification satisfies
desired security properties and does not contain any inconsistency. Work done by Al-
Shaer et al. goes some way to addressing this problem by identifying a number of
inconsistency types (or anomaly types) and defining an algorithm for detecting the
presence of these inconsistencies [1]. Whilst this technique has been extended to
detect inconsistency in complex scenarios that involve distributed firewalls, it only
detects a fixed set of inconsistency types [3]. Additionally, given that the analysis
algorithm operates on the low-level firewall policy rules, it is not able to provide any
information about the reasons for an anomaly to exist.

The rest of this paper is organised as follows. In the next section we present
information regarding the capabilities of LPP framework together with examples of
how the notation can be used to specify network abstractions and security
requirements. In section 3 we present the different types of analysis supported by our
technique followed by a discussion of our work in section 4. We describe how our
work compares with related research in the field in section 5 before presenting our
conclusions and plans for further work in section 6.

2. Security Requirements and the Argumentation Framework

One of the objectives of our work is to provide administrators with the ability to
specify their security requirements using high-level abstractions that are closer to their
natural specifications. We wish to do this in the context of a formal reasoning
framework that supports the prioritised ordering of firewall rules and also provides
automated analysis capabilities. In this section we present a formal language based
on an argumentation framework that is capable of representing background
information regarding the network, hosts and traffic types together with network
security requirements and relative priorities between rules.

Argumentation has been shown to be a useful framework for formalizing non-
monotonic reasoning and other forms of reasoning [4-7]. In general, an argumentation
framework is a pair <T,A> where T is a theory in some background (monotonic)
logic, equipped with an entailment relation, ╞, and A is a binary relation on the
subsets of T. These subsets of T form the arguments of the framework and A is a
non-symmetric attacking relation between arguments. For any two arguments A1
and A2 we say that A1 attacks A2 when (A1,A2) belongs to the attacking relation A.
In this context, an argument A1 attacks A2 if, given the same background knowledge,
A1 supports a conclusion that is incompatible with a conclusion supported by A2 and
A1 is defined to be stronger than A2. Argumentation reasoning is given through the
notion of an admissible argument, i.e. an argument that counterattacks another
argument. The formal definition of the argumentation framework is presented in [4,
6].

4 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

2. 1 Representing Security Requirements and Firewall Rules

In the specific argumentation reasoning framework we use in this paper, a theory T
is represented in the background logic (L, ╞), where the language L consists of
(extended) logic programming rules of the form:

 Name: L � L 1, . . . , L n, (n ≥ 0).

Here, L,L1, . . ., Ln are positive or negative literals. A negative literal is a literal of the
form ¬A, where A is an atom. As usual in Logic Programming a rule containing
variables is a compact representation of all the ground rules obtained from this under
the Hebrand universe. Each ground rule has a unique (parametric) name, Name, given
at the front of the rule. Using this notation we can specify a security requirement by
defining a rule with name req(…) that associates a given action with packets that
match the source, destination and traffic type. For example, the requirement to
“allow HTTP requests from the coyote.com network to web servers in the acme.com
network” would be defined as follows:

 req(allow_http_coyote, allow, Pkt):
 action(allow, Pkt) �
 packetFrom(coyote, Pkt), packetTo(Server, Pkt),
 property(‘web’, host, Server), traffic(http, Pkt).

The packet terms in the above rule are defined using 5-tuples of the form
pkt(Protocol, SourceIP, SourcePort, DestIP, DestPor t) . In the above
definition, the packetFrom(…) and packetTo(…) predicates are used to map the name
of a source or destination entity to the appropriate IP address fields of the packet. In
the above definition, the packetFrom(…) and packetTo(…) predicates are used to map
the name of a source or destination entity to the appropriate IP address fields of the
packet. These predicates are defined as follows:

 pktSource(SrcIP):
 packetFrom(From, pkt(_,SrcIP, _, _, _)) � ipaddr(From, SrcIP).

 pktDest(DstIP):
 packetTo(To, pkt(_, _, _, DstIP, _)) � ipaddr(To, DstIP).

The ipaddr(…) predicate is used to define background information regarding the
network, namely the IP address of a given network entity. This is described in more
detail in the next section.

 The overall theory T is separated into two parts: the basic part and the strategy
part. The basic part contains rules (of the form given above) whose conclusions, L,
are any literal except the special predicate, prefer(…) , which is the only predicate
that can appear in the conclusion of rules in the strategy part. Hence rules in the
strategy part take the special form

 Name: prefer(rule1, rule2) � L 1, . . . ,L n, (n ≥ 0).

where rule1 and rule2 are the names of any other two rules in the theory. A rule of
this form then means that under the conditions L1, . . . ,Ln, the rule with name, rule1,
has priority over the rule with name, rule2. The role of this priority relation is
therefore to encode locally the relative strength of (argument) rules in the theory. The
priority relation prefer(…) is required to be irreflexive. The rules rule1 and rule2
can themselves be rules expressing priority between other rules and hence the
framework allows higher-order priorities.

Using Argumentation Reasoning for Firewall Policy Specification and Analysis 5

We can use the prefer(…) predicate to defined security requirements express a
precedence relationship between two simpler requirements. For example, the
administrator might specify a requirement to “block any traffic except HTTP requests
to fudd.acme.com”. This type of requirement can be composed from “block any
traffic” and “allow HTTP requests to fudd.acme.com” together with the addition of a
rule that makes the latter requirement take precedence. The two simple requirements
would be specified as follows:

 req(block_any, block, Pkt):
 action(block, Pkt) �
 packetFrom(any, Pkt), packetTo(any, Pkt), traffi c(any, Pkt).

 req(allow_http_fudd, allow, Pkt):
 action(allow, Pkt) �
 packetFrom(any, Pkt), packetTo(fudd, Pkt), traff ic(http, Pkt).

This is followed by the precedence relationship between these requirements using
the prefer(…) predicate:

 order(allow_http_fudd, block_any):
 prefer(req(allow_http_fudd, allow, Pkt)),
 req(block_any, block, Pkt)).

In addition to representing security requirements, the notation described can be
used to specify legacy firewall rules, denoted by the term fwr(Order, Action, Pkt) .
For example, the first rule shown below represents Rule 9 given in Figure 1. Notice
that we use finite domain constraints to specify IP address and port ranges:

 fwr(9, allow, pkt(udp,ip(140,197,37,D),SP,ip(161,120,33,40), 53)):
 action(allow, pkt(udp,ip(140,197,37,D),SP,ip(161,12 0,33,40), 53))
 � D in 0..255, SP in 1..65536.

 order(N1, N2):
 prefer(fwr(N1, A1, Pkt), fwr(N2, A2, Pkt)) � N1 < N2.

The second rule shows how we can use the prefer(…) predicate to specify the
ordering of legacy firewall rules. In this fashion our formal framework can combine
the requirements specifications described above with legacy firewall rules.

2.2 Representing Background Information

We can separate out an auxiliary part, T0, of a given theory, T, from which the other
rules can draw background information in order to satisfy some of their conditions.
The reasoning of the auxiliary part of a theory is independent of the main
argumentation-based preference reasoning of the framework and hence any
appropriate logic can be used. In the context of this paper, we can use this feature to
specify subnets, hosts and traffic types in a network using the following three
predicates:

 network(Name, [Properties]).
 host(Name, [Properties]).
 ipaddr(Name, ip(A, B, C, D)).

The network(…) predicate defines a named network (e.g. acme.com, coyote.com
etc) together with a list of associated properties (e.g. wireless, WEP, etc.). Similarly,
the host(…) predicate defines a host name together with a list of properties associated
with that host. Finally, the ipaddr(…) predicate associates a particular host (or

6 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

network) with an IP address (or address range). The ip(…) function has four
arguments that correspond to each byte of a 32-bit IP address. Using these predicates,
the ‘acme.com’ network and ‘fudd.acme.com’ host in the example (Figure 1) would
be specified as follows:

 network(acme, [‘acme.com’, ‘wired’]).
 ipaddr(acme, ip(161, 120, 33, D)) � D in 0..255.

 host(fudd, [‘fudd.acme.com’, ‘web’, ‘ftp’, ‘dns’]).
 ipaddr(fudd, ip(161, 120, 33, 40)).

We use the finite domain constraint 0..255 to specify the range of values for the
‘acme’ network. Notice that each rule in the above definitions is prefixed with a
parameterised name, which becomes part of the arguments for the answer derived if
the rule forms part of the theory that supports a given goal. For example, if we query
the system for the available networks, each answer will be accompanied by an
argument set that includes the term network(…) , identifying the network rule that
defines each network. We can also specify a auxiliary predicate, property(…) , which
can be used to identify the network elements that have a given property:

 property(Prop, network, Element)
 � network(Element, [Props]), member(Prop, Props).

 property(Prop, host, Element)
 � host(Element, [Props]), member(Prop, Props).

In the above definition, the member(Property, Properties) predicate holds if the
property denoted by the first parameter is a member of the list denoted by the second.
The property(…) predicate can also be used to express higher-level, composite
properties. For example, the notion that all Linux hosts on a wired network are
considered to be secure can be expressed as follows:

 property(secure, host, Element)
 � property(wired, network, Network),
 property(Network, host, Element),
 property(linux, host, Element).

Finally we define a predicate, traffic(Name, Pkt) that associates the protocol
and ports fields of an IP packet with a given type of traffic. This predicate can be also
be used to define ranges of ports. For example, we can define the following rules to
specify an application called ‘http’ which matches TCP packets from any non-
reserved port (1024-65536) to port 80; and a generic application called ‘any’ which
matches packets containing any port number and protocol:

 traffic(http, pkt(Prtcl, SrcIP, SP, DstIP, DP)) �
 Prtcl=tcp, SP in 1024..65536, DP = 80.

 traffic(any, pkt(Prtcl, SrcIP, SP, DstIP, DP))) �
 (Prtcl=tcp; Prtcl=udp), SP in 1..65536, DP in 1. .65536.

It is important to note that specifying this background information is a one-time
task that can be automated using host/service discovery tools. Of course the
specification will have to be updated if there are any changes in the system, but this
process can also be automated.

In addition to background information regarding the network, the auxiliary part of
our theory also contains the definition of what constitutes a conflict (over and above
the standard conflict of classical negation, i.e. between an atom, A and its negation

Using Argumentation Reasoning for Firewall Policy Specification and Analysis 7

¬A). This is given through the definition of an auxiliary predicate, complement(…) ,
which is of the form:

 complement(L 1, L 2) � B.

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B.
Typically, the conditions B are empty and the definition of the complement(…)
predicate is kept simple. Also we will assume that the conditions of any rule in the
theory do not refer to the predicate prefer(…) thus avoiding self-reference problems.
Note also that the definition of complement(…) always includes that any ground atom,
prefer(rule1, rule2) , is incompatible with the atom prefer (rule2, rule1) and
vice-versa. In the context of firewall policies, we would define the actions allow and
block to be complementary using the following rule:

 complement(action(allow, _), action(block, _)).

The logical framework for argumentation and preference reasoning described here
has been realised in the GORGIAS tool developed at the University of Cyprus [8] and
has been used to implement the examples and generate the results presented in this
paper. This tool provides a query, prove([L 1, L 2, …, L n], Args) , which generates
the set of admissible arguments, Args, that support the conjunction of terms L1, …, Ln
for a given theory. In order to support the analysis of security requirements and
firewall policies, we define the following auxiliary query to determine if a particular
packet will be allowed or blocked by a firewall together with the rule (or requirement)
that causes this decision and the supporting arguments:

 packet_action(Action, Pkt, Rule, Args) �
 prove([action(Action, Pkt)], Args), member(Rule, Args),
 (Rule=requirement(R, Action, Pkt); Rule=fwr(N, A ction, Pkt)).

3. Analysing Firewall Policies

As a network grows, the task of managing the network security policies quickly
becomes unwieldy. Therefore it is very important to provide administrators with
support to analyse the policy specification and ensure that desired properties hold.
These analysis tasks can be divided into the following categories:

1. Anomaly Detection: Analysing the policy specification for potential anomalies.

2. Property Checking: Performing “what-if” analysis to determine if a given class
of traffic will be forwarded or blocked. For example, “Which packets are allowed
to reach the host fudd.acme.com?” This type of query can also be used to verify
that the policy specification satisfies desired behaviour.

3. Anomaly Resolution: Determining the correct ordering of policy rules to ensure
that anomalies are avoided (i.e. ensuring that rules related to exception cases are
given a higher precedence than general rules)

3.1 Anomaly Detection

Al-Shaer et al [1] have identified four firewall policy anomaly types – shadowing,
generalisation, correlation and redundancy and here we show how these anomalies

8 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

can be detected using the argumentation logic framework. From the description of
the various anomaly types it is clear that the key determinants of an anomaly is
whether the packets that match a rule are a subset (or superset) of the packets matched
by another rule; and the relative ordering of the rules. For example, rule R2 is said to
be shadowed by R1 if the rules specify incompatible actions, R1 has preference over
R2 and every packet that matches R2 is matched by R1. In order to detect this type of
anomaly we define the following rule:

 anomaly(shadow, R1, R2, Pkt1) �
 packet_action(A1, Pkt1, R1, _),
 complement(action(A1,_,_), action(A2,_,_)),
 packet_action(A2, Pkt2, R2, _),
 match(subset, Pkt1, Pkt2).

The above rule identifies a requirement R1 where the matching packets, Pkt1, are a
subset of the packets that match another requirement R2 and R2 defines an
incompatible action. The preference reasoning capabilities of the LPP framework
ensures that the above query identifies rules derived from R2 that have higher
precedence than rules derived from R1. Rules that participate in a generalisation
anomaly would cause a shadow anomaly if their relative order was reversed. We use
this property to define the following rule to detect this type of anomaly:

 anomaly(generalisation, R1, R2, Pkt2) �
 packet_action(A1, Pkt1, R1, _),
 complement(action(A1,_,_), action(A2,_,_)),
 packet_action(A2, Pkt2, R2, _),
 match(subset, Pkt2, Pkt1).

The above definition identifies a policy rule derived from requirement R2 that
takes precedence over a rule derived from requirement R1, where the packets matched
by R2 are a subset of those matched by R1 and the actions of R1 and R2 are
complementary.

Correlation anomalies occur when two rules with complementary actions match the
same packets, and the rules are not part of a shadowing or generalisation anomaly.
These can be detected using the following rule:

 anomaly(correlation, R1, R2, Pkt) �
 packet_action(A1, Pkt, R1, _),
 complement(action(A1,_,_), action(A2,_,_)),
 packet_action(A2, Pkt, R2, _),
 ¬ anomaly(generalisation, R1, R2, _),
 ¬ anomaly(generalisation, R2, R1, _),
 ¬ anomaly(shadow, R1, R2, _).

Redundancy anomalies differ from the other types in that they involve rules that
specify the same action. We define the following rule to detect this type of anomaly:

 anomaly(redundant, R1, R2, Pkt1) �
 packet_action(A, Pkt1, R1, _), packet_action(A, Pkt2, R2, _),
 R1 \== R2, match(subset, Pkt1, Pkt2).

Using these rules, we can detect all the anomalies in a specification using a single
high-level query. For example, performing such a query on the example system
shown in Figure 1 would generate the following result:

?- findall(Type-(R1, R2), anomaly(Type, R1, R2, _), List).
List = shadow-(deny_coyote_http_fudd,allow_coyote_http)
 shadow-(deny_coyote_http_fudd,allow_http_fudd)
 generalise-(deny_wiley_http,allow_coyote_http)

Using Argumentation Reasoning for Firewall Policy Specification and Analysis 9

 ...
 generalise-(allow_udpdns_fudd,deny_all)
 correlated-(deny_wiley_http,allow_http_fudd)
 correlated-(deny_tricky_ftp,allow_coyote_ftp_fudd)
 redundant- (allow_coyote_ftp_fudd, allow_coyote_ftp)
 redundant- (allow_coyote_udpdns_fudd,allow_udpdns_fudd)

3.2 Property Checking

In addition to checking for the anomaly types identified in the literature, the formal
framework for firewall policy specification described in this paper is a general one
that can be used to check if a specification satisfies other properties. For example, the
administrator might wish to verify which packets are allowed to reach the host
fudd.acme.com. This property would be checked by the following high-level query:

?- packet_action(allow, Pkt, Rule, Args), packetTo(fudd, Pkt).

 Rule = allow_coyote_http
 Packet = pkt(tcp, ip(140,192,37,D1), SP, ip(161,120,33,40), 80)
 D1 = 0..255, SP = 1024..65536
Arguments:
requirement(allow_coyote_http, allow, pkt(tcp, coyo te, SP, any, 80)).
pktDst(any,ip(161,120,33,40)).
pktSrc(coyote,ip(140,192,37,D1)).
...

The arguments explain that a TCP packet from 140.192.37.*-port:1024-65536 to
161.120.33.40-port:80 is allowed because the requirement ‘allow_coyote_http_allow’
specifies that packets from the ‘coyote.com’ network to port 80 of any host should be
allowed. Furthermore, the arguments show how the IP address and port ranges in the
allowed packet match the IP addresses of ‘coyote.com’ and ‘fudd’.

Notice that the use of the finite domain constraints for IP address and port ranges
means that the query returns an expression that describes all the packets that are
allowed to reach the host ‘fudd’. The ability to consider the relative priorities
between security requirements and also provide this type of coverage of the potential
packet space when reporting results is possible because we are using a logic
programming based approach that supports preference reasoning.

3.3 Anomaly Resolution

Of the anomaly types defined in the previous section, only redundancies and
shadowing anomalies are considered to be errors. Of these, shadowing anomalies can
be resolved by reversing the relative ordering of the two rules. This can be expressed
in our framework using a ‘higher-order’ preference reasoning rule as follows:

resolve(shadow, R1, R2):
prefer(R1, R2) � anomaly(shadow, R1, R2, _).

The above rule states that preference should be given to rule R1 over R2, i.e. the
shadowed rule is given higher priority. Redundancy anomalies on the other hand can
be resolved by ensuring the redundant rule has lower priority. This resolution process
is specified in our formal framework as follows:

10 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

resolve(redundancy, R1, R2):
prefer(R2, R1) � anomaly(redundant, R1, R2, _).

Here the anomaly(…) predicate holds if R1 is redundant to R2 and the prefer(…)
predicate defines that R2 should take precedence over R1. In our framework,
performing the resolution actions shown above will remove any redundancy and
shadowing anomalies from the specification. Additionally, the decision to perform a
particular resolution action will be explained with a set of arguments.

4. Discussion

In the study of the analysis of firewall policies we have shown specifically that the
various types of anomalies in firewall policies, identified separately in the literature,
can be captured naturally under the same and unified definition based on the standard
notion of an admissible argument in Logic Programming with Priorities (LPP). This
high level definition means (a) that we are more complete in capturing the notion of
anomaly and (b) that our definitions remain invariant as we further develop the types
of policy supported by the notation, e.g. as we consider extensions of policies for
distributed firewalls. The high-level of expressivity of the LPP framework,
particularly its ability to represent preference orderings which can be conditional on
some background properties means that the formalism can accurately capture the
behaviour of a firewall where policies are specified with an explicit priority order.
The LPP framework can be used to detect all the anomaly types identified in the
literature and also supports other types of property checking, thus allowing an
administrator to verify the behaviour of a firewall that is controlled by a given set of
requirements. Whilst we have yet to complete experiments on large policy sets, the
complexity of the argumentation reasoning framework for the restricted type of theory
described in this paper has been shown to be P-complete [9]. We are working to
validate the scalability of our approach as part of our ongoing research efforts.

In addition to experimenting with larger policy sets, we also hope to work on more
complex scenarios involving multiple firewalls in the network. In such a system,
where policies will be distributed across the network the problem of the existence of
anomalies is more severe as there are more possibilities for conflicts to occur. We can
have situations where one component decides to accept traffic whereas another
component decides to deny it. For example, an upstream firewall blocking a traffic
that is permitted by a downstream firewall is a type of inter-firewall shadowing
anomaly. In a “classical” approach to anomaly detection the definition of this
anomaly requires a detailed (and somewhat ad hoc) examination of the pairs of rules
from the two firewalls. In our declarative approach this anomaly falls under the same
definition given above.

5. Related Work

Work presented by Wool et al., proposes a high-level language for specifying network
information and firewall policies that allows firewall configuration to be performed at
an abstraction level that is closer to high-level programming. This work has led to the
development of a number of tools that support offline firewall policy analysis and

Using Argumentation Reasoning for Firewall Policy Specification and Analysis 11

management [10]. However, the analysis process does not detect specific anomaly
types such as shadowing and redundancy.

Uribe and Cheung have developed a technique for automating the analysis of
firewall and network intrusion detection systems that uses constraint logic
programming to model the networks and policies [11]. The use of finite domain
constraints to specify IP address and port ranges means that the analysis process
covers all IP address and port combinations for potential problems. However, the
technique does not support specification of explicit priorities between firewall policy
rules and the tool does not provide administrators with any explanation to support the
analysis results generated.

Al Shaer et al. and Yuan et al., have focussed on tools and techniques for analysing
legacy firewall policies for networks with centralised and distributed firewalls [1, 3,
12]. We use the classification of anomalies into the types: shadow, correlation,
generalisation and redundancy anomalies presented in [1] to specify the analysis rules
used in the framework presented in this paper. One shortcoming of their approach is
the dependence on legacy firewall policies in order to perform anomaly detection and
resolution. In contrast, our approach allows network security requirements to be
specified using high-level notations whilst still being capable of a range of analysis
tasks such as anomaly detection, resolution and property checking. Additionally by
using an argumentation reasoning framework, our approach has the advantage that the
administrator is given an explanation of the analysis results and resolution actions.

6. Conclusions and Future Work

We have presented an approach to specifying network security requirements that is
based on Argumentation for Logic Programming with Priorities (LPP). The use of
logic programming allows the specification to include high-level abstractions such as
networks, hosts, traffic types and their associated properties. This means that
administrators can specify their network security requirements in more familiar terms,
without having to know the exact IP address and port ranges for a given traffic flow.
We have shown that the technique is capable of performing a range of analysis tasks,
from detecting the firewall anomaly types identified in the literature to performing
more general property checking and conflict resolution. The use of LPP allows
preferences to be encoded, thus allowing complex reasoning over the relative
priorities between rules. Additionally, the encoded preferences can be conditional on
arbitrary system properties, an approach that allows greater flexibility than simple
assigned priorities between rules. Also, because LPP is implemented using
argumentation reasoning, the results of performing queries are enhanced by
explanations containing the rules that support a particular conclusion. This
information is particularly helpful to the user in understanding the reason for a traffic
flow to be allowed or blocked by the firewall. The current implementation of the
technique presented in this paper focuses on security requirements specification for
firewalls. However, given an appropriate formalisation of the underlying system, the
use of LPP can be extended to other application domains, such as network QoS
management.

Our system is implemented using the GORGIAS tool running in a standard Prolog
environment. Given a formal description of the network elements and security

12 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

requirements, it provides support for checking general properties, including checking
for the presence of the anomaly types identified in the literature, and also supports
anomaly resolution. At present we are focused on extending the tool to provide
automated generation of ‘anomaly-free’ operational firewall policies. Additionally
are developing a GUI that will shield the administrator from the underlying formal
notation, providing an interface that simplifies the process of defining their network
security requirements and analysing them for consistency. Our future work also
includes extending the formal notation to include information required to specify and
analyse network security requirements that are implemented using distributed
firewalls.

Acknowledgements

We acknowledge financial support for this work from the EPSRC (Grant Numbers -
GR/R31409/01, GR/S79985/01 and GR/T29246/01) and IBM Research.

References
[1] E. S. Al-Shaer and H. H. Hamed. "Firewall Policy Advisor for Anomaly Doscovery and

Rule Editing." In Proceedings of 8th IFIP/IEEE International Symposium on Integrated
Network Management, Colarado Springs, CO, IEEE, March 2003.

[2] Cisco. "Cisco PIX Firewall Configuration White Paper (DOCID: 68815),
http://www.cisco.com/warp/public/707/ezvpn-asa-svr-871-rem.pdf", Cisco Inc, 2006.

[3] E. S. Al-Shaer and H. H. Hamed. "Discovery of Policy Anomalies in Distributed
Firewalls." In Proceedings of 23rd IEEE Communications Society Conference
(INFOCOM), Hong Kong, IEEE, March 2004.

[4] P. M. Dung (1995). "On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games." Artificial
Intelligence(77): 321-357, 1995.

[5] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni (1997). "An abstract
argumentation theoretic approach to default reasoning." Artificial Intelligence 93: 63-101,
1997.

[6] A. Kakas, P. Mancerella, and P. M. Dung. "The acceptability semantics for logic
programs." In Proceedings of 11th International Conference on Logic Programming,
Santa Marherita Ligure, Italy, 1994.

[7] H. Prakken and G. Sartor. "A system for defeasible argumentation, with defeasible
priorities." In Proceedings of International Conference on Formal and Applied Practical
Reasoning, Springer-Verlag, LNAI 1085, 1996.

[8] Gorgias. "Argumentation and Abduction, http://www2.cs.ucy.ac.cy/~nkd/gorgias/",
[9] Y. Dimopoulos, B. Nebel, and F. Toni (2002). "On the Computational Complexity of

Assumption-based Argumentation for Default Reasoning." Artificial Intelligence 141: 57-
78, 2002.

[10] A. Mayer, A. Wool, and E. Ziskind (2006). "Offline firewall analysis." International
Journal on Information Security 5(3): 125-144, 2006.

[11] T. E. Uribe and S. Cheung. "Automatic Analysis of Firewall and Network Intrusion
Detection System Configurations." In Proceedings of ACM Workshop on Formal
Methods in Security Engineering, Washington, DC, ACM Press, October 2004.

[12] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra. "FIREMAN: a toolkit
for FIREwall Modeling and ANalysis." In Proceedings of IEEE Symposium on Security
and Privacy, Oakland, CA, May 2006.

