Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Using Argumentation Logic for Firewall Policy
Specification and Analysis

Conference or Workshop Item

How to cite:

Bandara, Arosha K.; Kakas, Antonis; Lupu, Emil C. and Russo, Alessandra (2006). Using Argumentation
Logic for Firewall Policy Specification and Analysis. In: Lecture Notes in Computer Science, 4269 pp. 185-196.

For guidance on citations see FAQs!

© [not recorded]
Version: [not recorded]

Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1007 /11907466
http://www.springerlink.com/content /x3216672753j5744 / 7p=5984c7458cf34a21b288d3d18dc3b042& pi=15

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online's data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/82904364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1007/11907466
http://www.springerlink.com/content/x3216672753j5744/?p=5984c7458cf34a21b288d3d18dc3b042&pi=15
http://oro.open.ac.uk/policies.html

Using Argumentation L ogic for
Firewall Policy Specification and Analysis

Arosha K Bandara Antonis Kaka§ Emil C Lupd, Alessandra Russo

1: Department of Computing, Imperial College London, London AZ
2: Department of Computer Science, University of Cyprupr@y
{bandara, ack, ecl1, ar3}@doc.ic.ac.uk

Firewalls are important perimeter security mechanisms ithgtement an
organisation’s network security requirements and can be nasbyidifficult to
configure correctly. Given their widespread use, itrscial that network
administrators have tools to translate their securipirements into firewall
configuration rules and ensure that these rules are tamtsigith each other. In
this paper we propose an approach to firewall policy spatifin and analysis
that uses a formal framework for argumentation based rprefe reasoning.
By allowing administrators to define network abstractioesy.(subnets,
protocols etc) security requirements can be specified ieckmtive manner
using high-level terms. Also it is possible to specifyfgmences to express the
importance of one requirement over another. The use afrafdramework
means that the security requirements defined can be autdipatiwaysed for
inconsistencies and firewall configurations can be autonfigtgenerated. We
demonstrate that the technique allows any inconsistency properiuding
those identified in previous research, to be specified amnatically checked
and the use of an argumentation reasoning framework proadiemistrators
with information regarding the causes of the inconsistenc

1. Introduction

Firewalls are widely used perimeter security mechanibaisfitter packets based on
a set of configuration rules that are derived from thergsgtion’s network security
requirements. The rules are specified in priority orderare of the form:
<order>: <action>if <network conditions>
where the <network conditions> identify a certain tygberaffic, typically from

one domain to another under some protocol, and thendield, <action>, typically
takes the values “allow” or “deny” thus specifying if ttreffic is to be allowed to
flow or stopped. The semantics of the firewall policgitgen operationally and it is
crucially dependent on the total ordering of its rulee @tdering position of a rule is
given by a (unique) number in <order> and for a given pabkefirewall will check
the rules in ascending order. The action field of fin& rule whose network
conditions are satisfied by the packet determines iflitbe allowed or blocked. All
subsequent rules are ignored.

In this paper we propose a technique for specifying sga@dquirements within
an argumentation based framework for Logic Programmirth Rriorities (LPP).

2 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russ

This allows us to specify and use high-level abstrastiom network entities, e.g.
protocols, applications, sub-networks. It also allowsauspecify relative ordering
between security requirements. The framework supportsnatito generation of
firewall configuration rules that satisfy the requiremsenncluding the relative
ordering. Additionally, we demonstrate that the framdwecan detect a range of
inconsistencies, including the anomaly types identifiedAlyShaer and Hamed [1],
and also perform anomaly resolution.

Figure 1 shows an example system taken from [1] whefieewall is used to
protect hosts in an enterprise network (acme.com) fraticious network traffic
together with the set of rules that control the beahavof the firewall. In this
example, Rules 8 and 11 implement the default security requitetivet all traffic
should be blocked unless there is a specific requiremeritote specific types of
traffic. These exception cases to the default requireraemtimplemented by
specifying firewall policy rules that have a higher gtioordering than the default
policy rule. For example, Rule 7 implements the requér@nto “allow FTP
connections from hosts in the coyote.com network to the host ftp.aortheswd Rule
1 and 2 td‘allow all HTTP requests from coyote.com to acme.com except frarse

the host wiley.coyote.com”
161.120.33.40
fudd

b Y 161.120.33.*
e,

INTERNET

* Kok k

Order Ptrcl SrcIP Src Port DstIP DstPort Action

1 tcp 140.192.37.20 any *EEE 80 block

2 tcp 140.192.37.* any *EEE 80 allow

3 tcp *EEE any 161.120.33.40 80 allow

4 tcp 140.192.37.* any 161.120.33.40 80 block

5 tcp 140.192.37.30 any *EEE 21 block

6 tcp 140.192.37.* any *EEE 21 allow

coyte.com tricky 7 tp 14010237 any 161.120.33.40 21 allow
140.192.37 * 140.192.37.30

8 tcp *EEE any *EEE any block

wiley 9 udp 140.19237* any 161.120.33.40 53 allow

140.192.37.20 10 udp any 161.120.33.40 53 allow

11 udp A any *EEE any block

Fig. 1. Example network and associated firewall policy rulgs [

In this example, the translation of these requiremiedsthe rules shown is done
manually and depends on administrators’ knowledge of tiweldvel network
topology and protocols and also having the expertise tgrasise correct priority
order to the rules. This method of policy specificatias the added disadvantage
that no link is maintained between the security requinésnand the policy rules that
implement them. This makes policy specifications hardrigerstand and it is easy
for the administrator to make errors, particularly whikealing with large distributed
systems that involve many networks, hosts and applicatiSosne firewall solution
vendors have made an attempt to support high-level atistrady mapping named

Using Argumentation Reasoning for Firewall Policy Speatfin and Analysis 3

traffic classes to low-level properties such as hosadBresses, port numbers and
protocols [2]. However, this process involves a signifiGanount of manual effort
on the part of the administrator and the tools providecholomaintain any link
between the security requirements and the underpatigy rules.

Another shortcoming with existing approaches to fireyalicy specification is
the limited support for automated analysis that verified the specification satisfies
desired security properties and does not contain any iistenmsy. Work done by Al-
Shaer et al. goes some way to addressing this problem byfyisena number of
inconsistency types (aenomaly typesand defining an algorithm for detecting the
presence of these inconsistencies [1]. Whilst taéhriique has been extended to
detect inconsistency in complex scenarios that invdiseributed firewalls, it only
detects a fixed set of inconsistency types [3]. Additigngiven that the analysis
algorithm operates on the low-level firewall policy mylé is not able to provide any
information about the reasons for an anomaly to exist.

The rest of this paper is organised as follows. In thé section we present
information regarding the capabilities of LPP framewtniether with examples of
how the notation can be used to specify network abginsctand security
requirements. In section 3 we present the different typasalysis supported by our
technique followed by a discussion of our work in sectiorWle describe how our
work compares with related research in the field in sedidefore presenting our
conclusions and plans for further work in section 6.

2. Security Requirements and the Argumentation Framework

One of the objectives of our work is to provide admiaistrs with the ability to
specify their security requirements using high-level alotions that are closer to their
natural specifications. We wish to do this in thetegh of a formal reasoning
framework that supports the prioritised ordering of firéwales and also provides
automated analysis capabilities. In this section we ptesdéormal language based
on an argumentation framework that is capable of reptiegerbackground
information regarding the network, hosts and traffic sypegether with network
security requirements and relative priorities betweessrul

Argumentation has been shown to be a useful framewarkofalizing non-
monotonic reasoning and other forms of reasoning [43@eheral, an argumentation
framework is a pair where T is a theory in some background (monotonic)
logic, equipped with an entailment relatioh, and A is a binary relation on the
subsets of T. These subsets of T form ahguments of the framework and\ is a
non-symmetricattacking relation between arguments. For any two arguments Al
and A2 we say thak1 attacks A2 when (A1,A2) belongs to the attacking relatfan
In this context, an argument Al attacks A2 if, givensghme background knowledge,
Al supports a conclusion that is incompatible with a emich supported by A2 and
Al is defined to be stronger than A2. Argumentation mr@agois given through the
notion of anadmissible argumenti.e. an argument that counterattacks another
argument. The formal definition of the argumentati@nfework is presented in [4,
6].

4 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russ

2. 1 Representing Security Requirements and Firewall Rules

In the specific argumentation reasoning framework we ugid@srpaper, a theory T
is represented in the background logic (]t) where the language L consists of
(extended) logic programming rules of the form:

Name: L €Ly, ..., L (o 20).

Here, L,L, . . ., Ly are positive or negative literals. A negative litész literal of the
form —A, where A is an atom. As usual in Logic Progngng a rule containing
variables is a compact representation of all thergtaules obtained from this under
the Hebrand universe. Each ground rule has a unique (pai@mamepane, given

at the front of the rule. Using this notation we cpacify a security requirement by
defining a rule with nameeq(...) that associates a given action with packets that
match the source, destination and traffic type. For exgntphk requirement to
“allow HTTP requests from the coyote.com network to web semmehe acme.com
network” would be defined as follows:

req(all ow_http_coyote, allow, Pkt):

action(allow, Pkt) <
packetFrom(coyote, Pkt), packetTo(Server, Pkt),
property(‘web’, host, Server), traffic(http, Pkt).
The packet terms in the above rule are defined using 5-tupleseoform
pkt(Protocol, SourcelP, SourcePort, DestlP, DestPor t) . In the above

definition, thepacketFrom(...) andpacketTo(...) predicates are used to map the name
of a source or destination entity to the appropriatad@ess fields of the packet. In
the above definition, thgacketFrom(...) andpacketTo(...) predicates are used to map
the name of a source or destination entity to the qpiate |P address fields of the
packet. These predicates are defined as follows:

pkt Source(Srcl P):

packetFrom(From, pkt(_,SrclP, _, _,)) < ipaddr(From, SrclP).
pkt Dest (Dst 1 P):
packetTo(To, pkt(_, _, _, DstIP, _)) < ipaddr(To, DstIP).

Theipaddr(...) predicate is used to define background information regartimg t
network, namely the IP address of a given network enfityis is described in more
detail in the next section.

The overall theory T is separated into two parts:hhsc part and thestrategy
part. The basic part contains rules (of the form gi@bave) whose conclusions, L,
are any literal except the special predicatefer(...) , which is the only predicate
that can appear in the conclusion of rules in the gyapart. Hence rules in the
strategy part take the special form

Name: prefer(rulel, rule2) <L, ..., L (o 20).

where rulel and rule2 are the names of any other twe iuthe theory. A rule of
this form then means that under the conditiopns L. ,Ln, the rule with name, rulel,
has priority over the rule with name, rule2. The roletla§ priority relation is
therefore to encode locally the relative strength afyaent) rules in the theory. The
priority relationprefer(...) is required to be irreflexive. The rulege1 andrule2
can themselves be rules expressing priority betweeer atles and hence the
framework allows higher-order priorities.

Using Argumentation Reasoning for Firewall Policy Speatfin and Analysis 5

We can use therefer(...) predicate to defined security requirements express a
precedence relationship between two simpler requiremerfisr example, the
administrator might specify a requirementitock any traffic except HTTP requests
to fudd.acme.com” This type of requirement can be composed ffbiock any
traffic” and“allow HTTP requests to fudd.acme.con@gether with the addition of a
rule that makes the latter requirement take precedentre.two simple requirements
would be specified as follows:

req(bl ock_any, block, Pkt):

action(block, Pkt) <

packetFrom(any, Pkt), packetTo(any, Pkt), traffi c(any, Pkt).
req(all ow_http_fudd, allow, Pkt):

action(allow, Pkt) <

packetFrom(any, Pkt), packetTo(fudd, Pkt), traff ic(http, Pkt).

This is followed by the precedence relationship betwheset requirements using
theprefer(...) predicate:

order (al l ow_http_fudd, block_any):
prefer(req(allow_http_fudd, allow, Pkt)),
r eq(block_any, block, Pkt)).

In addition to representing security requirements, thation described can be
used to specify legacy firewall rules, denoted by the ter@rder, Action, Pkt)
For example, the first rule shown below represents Buaen in Figure 1. Notice
that we use finite domain constraints to specify IRr@skland port ranges:
fw (9, allow, pkt(udp,ip(140,197,37,D),SP,ip(161, 120, 33,40), 53)):
action(allow, pkt(udp,ip(140,197,37,D),SP,ip(161,12 0,33,40), 53))
< Din 0..255, SP in 1..65536.
order (N1, N2):
prefer(fwr(N1, A1, Pkt), fwr(N2, A2, Pkt)) < N1 < N2
The second rule shows how we can usepthfer(...) predicate to specify the
ordering of legacy firewall rules. In this fashion oumfal framework can combine
the requirements specifications described above with ydgaavall rules.

2.2 Representing Background Infor mation

We can separate out an auxiliary pag, f a given theory, T, from which the other
rules can draw background information in order to sassine of their conditions.
The reasoning of the auxiliary part of a theory is inddpah of the main
argumentation-based preference reasoning of the framewark hence any
appropriate logic can be used. In the context of thisrpamecan use this feature to
specify subnets, hosts and traffic types in a netwoikguthe following three
predicates:

network(Name, [Properties]).

host(Name, [Properties]).

ipaddr(Name, ip(A, B, C, D)).

The network(...) predicate defines a named network (e.g. acme.com, coywte
etc) together with a list of associated properties (gigless, WEP, etc.). Similarly,
thehost(...) predicate defines a host name together with a listagfepties associated
with that host. Finally, thepaddr(...) predicate associates a particular host (or

6 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russ

network) with an IP address (or address range). igthe function has four
arguments that correspond to each byte of a 32-bit IP adtlesg these predicates,
the ‘acme.com’ network and ‘fudd.acme.com’ host ingkample (Figure 1) would
be specified as follows:

network(acme, [‘acme.com’, ‘wired]).

ipaddr(acme, ip(161, 120, 33, D)) < Din0..255.

host(fudd, [‘fudd.acme.com’, ‘web’, ‘ftp’, ‘dns’]).

ipaddr(fudd, ip(161, 120, 33, 40)).

We use the finite domain constraint 0..255 to specifyréinge of values for the
‘acme’ network. Notice that each rule in the abovenitedns is prefixed with a
parameterised name, which becomes part of the argufoeritee answer derived if
the rule forms part of the theory that supports a given dgeal example, if we query
the system for the available networks, each answlrbea accompanied by an
argument set that includes the tergwork(...) , identifying the network rule that
defines each network. We can also specify a auxiliagligate property(...) , which
can be used to identify the network elements that haveea groperty:

property(Prop, network, Element)

< network(Element, [Props]), member(Prop, Props).
property(Prop, host, Element)

< host(Element, [Props]), member(Prop, Props).

In the above definition, the member(Property, Propérgeesdicate holds if the
property denoted by the first parameter is a member disthdenoted by the second.
The property(...) predicate can also be used to express higher-level, ciiempos
properties. For example, the notion that all Linux hastsa wired network are
considered to be secure can be expressed as follows:

property(secure, host, Element)
& property(wired, network, Network),
property(Network, host, Element),
property(linux, host, Element).

Finally we define a predicateaffic(Name, Pkt) that associates the protocol
and ports fields of an IP packet with a given type of gaffihis predicate can be also
be used to define ranges of ports. For example, we dme dee following rules to
specify an application called ‘http’ which matches TCP packeom any non-
reserved port (1024-65536) to port 80; and a generic applicatltad cany’ which
matches packets containing any port number and protocol:

traffic(http, pkt(Prtcl, SrclP, SP, DstIP, DP)) <
Prtcl=tcp, SP in 1024..65536, DP = 80.

traffic(any, pkt(Prtcl, SrclP, SP, DstIP, DP))) <
(Prtcl=tcp; Prtcl=udp), SP in 1..65536, DP in 1. .65536.

It is important to note that specifying this backgroundrnmfation is a one-time
task that can be automated using host/service discovety. to®f course the
specification will have to be updated if there are anygha in the system, but this
process can also be automated.

In addition to background information regarding the nekwtire auxiliary part of
our theory also contains the definition of what caots a conflict (over and above
the standard conflict of classical negation, i.e. betwan atom, A and its negation

Using Argumentation Reasoning for Firewall Policy Speatfan and Analysis 7

=A). This is given through the definition of an auxiligrgedicate,complement(...) ,
which is of the form:

complement(L ., L ,) < B.

stating that literals L1 and L2 are conflicting undemed(auxiliary) conditions B.
Typically, the conditions B are empty and the definitiohthe complement(...)
predicate is kept simple. Also we will assume that traitions of any rule in the
theory do not refer to the predicatefer(...) thus avoiding self-reference problems.
Note also that the definition eémplement(...) always includes that any ground atom,
prefer(rulel, rule2) , is incompatible with the atompefer (rule2, rule1) and
vice-versa. In the context of firewall policies, weuld define the actionallow and
blockto be complementary using the following rule:

complement(action(allow, _), action(block, _)).

The logical framework for argumentation and preferaeesoning described here
has been realised in the GORGIAS tool developed at theetsity of Cyprus [8] and
has been used to implement the examples and generatestilie peesented in this
paper. This tool provides a quepypve(L 1, L 2 ...,L o], Args) , which generates
the set of admissible arguments, Args, that support tharadtion of terms |, ..., L,
for a given theory. In order to support the analysisezsty requirements and
firewall policies, we define the following auxiliary qyeto determine if a particular
packet will be allowed or blocked by a firewall togethethvthe rule (or requirement)
that causes this decision and the supporting arguments:

packet_action(Action, Pkt, Rule, Args) <
prove([action(Action, Pkt)], Args), member(Rule, Args),
(Rule=requirement(R, Action, Pkt); Rule=fwr(N, A ction, Pkt)).

3. Analysing Firewall Policies

As a network grows, the task of managing the network gsgcpalicies quickly

becomes unwieldy. Therefore it is very importantptovide administrators with
support to analyse the policy specification and ensuredibsired properties hold.
These analysis tasks can be divided into the followinggcaies:

1. Anomaly Detection: Analysing the policy specification for potential anoi@s

2. Property Checking: Performing “what-if” analysis to determine if a givelass
of traffic will be forwarded or blocked. For examplé/hich packets are allowed
to reach the host fudd.acme.comThis type of query can also be used to verify
that the policy specification satisfies desired behavi

3. Anomaly Resolution: Determining the correct ordering of policy rules to easu
that anomalies are avoided (i.e. ensuring that rulesecklto exception cases are
given a higher precedence than general rules)

3.1 Anomaly Detection

Al-Shaer et al [1] have identified four firewall policy @naly types — shadowing,
generalisation, correlation and redundancy and herehow sow these anomalies

8 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russ

can be detected using the argumentation logic framewbrkm the description of
the various anomaly types it is clear that the keterd@nants of an anomaly is
whether the packets that match a rule are a subsetersgt) of the packets matched
by another rule; and the relative ordering of the rufes. example, rule R2 is said to
be shadowed by R1 if the rules specify incompatible actiRfishas preference over
R2 and every packet that matches R2 is matched by R¥dénto detect this type of
anomaly we define the following rule:

anomaly(shadow, R1, R2, Pktl) <
packet_action(Al, Pktl, R1,),
complement(action(Al1,_,), action(A2,_,_)),
packet_action(A2, Pkt2, R2, _),
match(subset, Pktl, Pkt2).

The above rule identifies a requirement R1 where the imgtgiackets, Pktl, are a
subset of the packets that match another requirementnd2R2 defines an
incompatible action. The preference reasoning cépedbiof the LPP framework
ensures that the above query identifies rules derived fr@mthBRt have higher
precedence than rules derived from R1. Rules that patécipaa generalisation
anomaly would cause a shadow anomaly if their relatider was reversed. We use
this property to define the following rule to detectttyipe of anomaly:

anomaly(generalisation, R1, R2, Pkt2) <
packet_action(Al, Pktl, R1,),
complement(action(Al1,_,), action(A2,_,_)),
packet_action(A2, Pkt2, R2, _),
match(subset, Pkt2, Pktl).

The above definition identifies a policy rule derived froeguirement R2 that
takes precedence over a rule derived from requirement Rie wWiepackets matched
by R2 are a subset of those matched by R1 and the actioR$ and R2 are
complementary.

Correlation anomalies occur when two rules with complatiary actions match the
same packets, and the rules are not part of a shadowigeneralisation anomaly.
These can be detected using the following rule:

anomaly(correlation, R1, R2, Pkt) <
packet_action(Al, Pkt, R1,),
complement(action(Al1,_,), action(A2,_,_)),
packet_action(A2, Pkt, R2,),
- anomaly(generalisation, R1, R2,),
- anomaly(generalisation, R2, R1,),
- anomaly(shadow, R1, R2,).

Redundancy anomalies differ from the other types im tthey involve rules that

specify the same action. We define the following rulddiect this type of anomaly:
anomaly(redundant, R1, R2, Pkt1) <
packet_action(A, Pktl, R1,), packet_action(A, Pkt2, R2,),
R1\== R2, match(subset, Pktl, Pkt2).

Using these rules, we can detect all the anomaliespeeification using a single
high-level query. For example, performing such a query enettample system
shown in Figure 1 would generate the following result:

?- findall (Type-(Rl, R2), anomaly(Type, Rl, R2, _), List).

Li st = shadow- (deny_coyote_http_fudd,allow_coyote_http)

shadow- (deny_coyote_http_fudd,allow_http_fudd)
gener al i se- (deny_wiley_http,allow_coyote_http)

Using Argumentation Reasoning for Firewall Policy Speatfin and Analysis 9

gener al i se- (allow_udpdns_fudd,deny_all)

correl at ed- (deny_wiley_http,allow_http_fudd)

correl at ed- (deny_tricky_ftp,allow_coyote_ftp_fudd)
redundant - (allow_coyote_ftp_fudd, allow_coyote_ftp)
redundant - (allow_coyote_udpdns_fudd,allow_udpdns_fudd)

3.2 Property Checking

In addition to checking for the anomaly types identifiedhie literature, the formal

framework for firewall policy specification described this paper is a general one
that can be used to check if a specification satisfiesr properties. For example, the
administrator might wish to verify which packets a#owed to reach the host
fudd.acme.com. This property would be checked by the fallgWwigh-level query:

?- packet_action(allow, Pkt, Rule, Args), packetTo(fudd, Pkt).

Rul e = all ow_coyote_http
Packet = pkt(tcp, ip(140,192,37,D1), SP, ip(161, 120, 33,40), 80)
D1 = 0..255, SP = 1024..65536
Arguments:
requirement(allow_coyote_http, allow, pkt(tcp, coyo te, SP, any, 80)).

pktDst(any,ip(161,120,33,40)).
pktSrc(coyote,ip(140,192,37,D1)).

The arguments explain that a TCP packet from 140.192.37*%084-65536 to
161.120.33.40-port:80 is allowed because the requirement ‘allowtecdytp _allow’
specifies that packets from the ‘coyote.com’ network tw §0 of any host should be
allowed. Furthermore, the arguments show how theltlPeas and port ranges in the
allowed packet match the IP addresses of ‘coyote.coth'fadd’.

Notice that the use of the finite domain constraiotsIP address and port ranges
means that the query returns an expression that desellbéee packets that are
allowed to reach the host ‘fudd’. The ability to considee relative priorities
between security requirements and also provide this typevefrage of the potential
packet space when reporting results is possible because eveserg a logic
programming based approach that supports preference reasoni

3.3 Anomaly Resolution

Of the anomaly types defined in the previous sectmmy redundancies and
shadowing anomalies are considered to be errors. ed¢tishadowing anomalies can
be resolved by reversing the relative ordering of thertes. This can be expressed
in our framework using a ‘higher-order’ preference raagprule as follows:

resol ve(shadow, Rl, R2):

prefer(R1, R2) < anomaly(shadow, R1, R2,).

The above rule states that preference should be giveret&r1 over R2, i.e. the
shadowed rule is given higher priority. Redundancy anesal the other hand can
be resolved by ensuring the redundant rule has lower pridrtis resolution process
is specified in our formal framework as follows:

10 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

resol ve(redundancy, Rl1, R2):
prefer(R2, R1) < anomaly(redundant, R1, R2,).

Here theanomaly(...) predicate holds if R1 is redundant to R2 anddfeer(...)
predicate defines that R2 should take precedence over Rlourldramework,
performing the resolution actions shown above will remaemg redundancy and
shadowing anomalies from the specification. Additignahe decision to perform a
particular resolution action will be explained with a seargfuments.

4. Discussion

In the study of the analysis of firewall policies we hatewn specifically that the
various types of anomalies in firewall policies, ideptifiseparately in the literature,
can be captured naturally under the same and unified dafitiased on the standard
notion of an admissible argument in Logic Programming Wittorities (LPP). This
high level definition means (a) that we are more cotephecapturing the notion of
anomaly and (b) that our definitions remain invariantvadurther develop the types
of policy supported by the notation, e.g. as we considensixtes of policies for
distributed firewalls. The high-level of expressivity diet LPP framework,
particularly its ability to represent preference onagsi which can be conditional on
some background properties means that the formalism camately capture the
behaviour of a firewall where policies are specifiedhwan explicit priority order.
The LPP framework can be used to detect all the anotypds identified in the
literature and also supports other types of property chgckhus allowing an
administrator to verify the behaviour of a firewdlht is controlled by a given set of
requirements. Whilst we have yet to complete experimamtarge policy sets, the
complexity of the argumentation reasoning framework forésgricted type of theory
described in this paper has been shown to be P-conipleteWe are working to
validate the scalability of our approach as part of agioing research efforts.

In addition to experimenting with larger policy sets, we &epe to work on more
complex scenarios involving multiple firewalls in thewatk. In such a system,
where policies will be distributed across the netwok problem of the existence of
anomalies is more severe as there are more possgbibit conflicts to occur. We can
have situations where one component decides to accdfit tdoereas another
component decides to deny it. For example, an upstreamalfirblocking a traffic
that is permitted by a downstream firewall is a typeindér-firewall shadowing
anomaly. In a “classical” approach to anomaly deacthe definition of this
anomaly requires a detailed (and somewhat ad hoc) examimdithe pairs of rules
from the two firewalls. In our declarative approach #memaly falls under the same
definition given above.

5. Related Work

Work presented by Wool et al., proposes a high-levgluage for specifying network
information and firewall policies that allows firewalbnfiguration to be performed at
an abstraction level that is closer to high-level progning. This work has led to the
development of a number of tools that support offlinentié policy analysis and

Using Argumentation Reasoning for Firewall Policy Speatfan and Analysis 11

management [10]. However, the analysis process does mat dpecific anomaly
types such as shadowing and redundancy.

Uribe and Cheung have developed a technique for automatingntlysis of
firewall and network intrusion detection systems thatsus®nstraint logic
programming to model the networks and policies [11]. The afsfinite domain
constraints to specify IP address and port ranges meanshéhanalysis process
covers all IP address and port combinations for poteptiablems. However, the
technique does not support specification of explicit preribetween firewall policy
rules and the tool does not provide administrators withexplanation to support the
analysis results generated.

Al Shaer et al. and Yuan et al., have focussed on ammldechniques for analysing
legacy firewall policies for networks with centralisadd distributed firewalls [1, 3,
12]. We use the classification of anomalies into tyy@es: shadow, correlation,
generalisation and redundancy anomalies presentedtio $pecify the analysis rules
used in the framework presented in this paper. One shongahtheir approach is
the dependence on legacy firewall policies in order tmpariinomaly detection and
resolution. In contrast, our approach allows networduse requirements to be
specified using high-level notations whilst still beirepable of a range of analysis
tasks such as anomaly detection, resolution and propestkicly. Additionally by
using an argumentation reasoning framework, our approadhdaslvantage that the
administrator is given an explanation of the analysis teanld resolution actions.

6. Conclusions and Future Work

We have presented an approach to specifying network seceguirements that is
based on Argumentation for Logic Programming with Pigsi{LPP). The use of
logic programming allows the specification to include Higlel abstractions such as
networks, hosts, traffic types and their associatampgities. This means that
administrators can specify their network security requéms in more familiar terms,
without having to know the exact IP address and port raioges given traffic flow.
We have shown that the technique is capable of performiagge of analysis tasks,
from detecting the firewall anomaly types identified fire fiterature to performing
more general property checking and conflict resolution.he Tise of LPP allows
preferences to be encoded, thus allowing complex reasamieg the relative
priorities between rules. Additionally, the encoded gmexices can be conditional on
arbitrary system properties, an approach that allowstegréaxibility than simple
assigned priorities between rules. Also, because ifRmplemented using
argumentation reasoning, the results of performing quesies enhanced by
explanations containing the rules that support a particotarclusion. This
information is particularly helpful to the user in undansling the reason for a traffic
flow to be allowed or blocked by the firewall. The rent implementation of the
technique presented in this paper focuses on security eéetgnts specification for
firewalls. However, given an appropriate formaligatad the underlying system, the
use of LPP can be extended to other application domains, asuctetwork QoS
management.

Our system is implemented using the GORGIAS tool runnirggstandard Prolog
environment. Given a formal description of the nekwelements and security

12 A. K. Bandara, A. C. Kakas, E. C. Lupu and A. Russo

requirements, it provides support for checking general pregeiticluding checking
for the presence of the anomaly types identified inliteeature, and also supports
anomaly resolution. At present we are focused on extgnitii@ tool to provide
automated generation of ‘anomaly-free’ operationafalé policies. Additionally
are developing a GUI that will shield the administrdtom the underlying formal
notation, providing an interface that simplifies the psscef defining their network
security requirements and analysing them for consisten©ur future work also
includes extending the formal notation to include infororatiequired to specify and
analyse network security requirements that are implementedy wbstributed
firewalls.

Acknowledgements

We acknowledge financial support for this work from the E€Grant Numbers -
GR/R31409/01, GR/S79985/01 and GR/T29246/01) and IBM Research.

References

[1] E. S. Al-Shaer and H. H. Hamed. "Firewall Policghdsor for Anomaly Doscovery and
Rule Editing." In Proceedings of 8th IFIP/IEEE InternatiomainSosium on Integrated
Network Management, Colarado Springs, CO, IEEE, March 2003.

[2] Cisco. "Cisco PIX Firewall Configuration White PapefDOCID: 68815),
http://www.cisco.com/warp/public/707/ezvpn-asa-svr-871-rem.|@ig¢o Inc, 2006.

[3] E. S. Al-Shaer and H. H. Hamed. "Discovery of Politsgomalies in Distributed
Firewalls." In Proceedings of 23rd IEEE Communications Soci€gnference
(INFOCOM), Hong Kong, IEEE, March 2004.

[4] P. M. Dung (1995). "On the acceptability of arguments asdundamental role in
nonmonotonic reasoning, logic programming and n-person gamaAdificial
Intelligence(77): 321-357, 1995.

[5] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni (@®9'An abstract
argumentation theoretic approach to default reasoning.'|atifntelligence 93: 63-101,
1997.

[6] A. Kakas, P. Mancerella, and P. M. Dung. "The acceptalsiemantics for logic
programs.” In Proceedings of 11th International Conferencéogic Programming,
Santa Marherita Ligure, Italy, 1994.

[71 H. Prakken and G. Sartor. "A system for defeasibigumentation, with defeasible
priorities." In Proceedings of International Conference anm&band Applied Practical
Reasoning, Springer-Verlag, LNAI 1085, 1996.

[8] Gorgias. "Argumentation and Abduction, http://www2.cs.ucgyenkd/gorgias/”,

[9] Y. Dimopoulos, B. Nebel, and F. Toni (2002). "On the Comrial Complexity of
Assumption-based Argumentation for Default Reasoning.” Arlfiotelligence 141: 57-
78, 2002.

[10] A. Mayer, A. Wool, and E. Ziskind (2006). "Offline firad analysis." International
Journal on Information Security 5(3): 125-144, 2006.

[11] T. E. Uribe and S. Cheung. "Automatic Analysis of Wal and Network Intrusion
Detection System Configurations." In Proceedings of ACMrR&lwop on Formal
Methods in Security Engineering, Washington, DC, ACM Pi@sspyber 2004.

[12] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Matra. "FIREMAN: a toolkit
for FIREwall Modeling and ANalysis." In Proceedings of EBymposium on Security
and Privacy, Oakland, CA, May 2006.

