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Firewalls are important perimeter security mechanisms that implement an 
organisation’s network security requirements and can be notoriously difficult to 
configure correctly.  Given their widespread use, it is crucial that network 
administrators have tools to translate their security requirements into firewall 
configuration rules and ensure that these rules are consistent with each other.  In 
this paper we propose an approach to firewall policy specification and analysis 
that uses a formal framework for argumentation based preference reasoning.  
By allowing administrators to define network abstractions (e.g. subnets, 
protocols etc) security requirements can be specified in a declarative manner 
using high-level terms. Also it is possible to specify preferences to express the 
importance of one requirement over another.  The use of a formal framework 
means that the security requirements defined can be automatically analysed for 
inconsistencies and firewall configurations can be automatically generated.  We 
demonstrate that the technique allows any inconsistency property, including 
those identified in previous research, to be specified and automatically checked 
and the use of an argumentation reasoning framework provides administrators 
with information regarding the causes of the inconsistency. 

1. Introduction 

Firewalls are widely used perimeter security mechanisms that filter packets based on 
a set of configuration rules that are derived from the organisation’s network security 
requirements.  The rules are specified in priority order and are of the form: 

 <order> : <action> if <network conditions> 

where the <network conditions> identify a certain type of traffic, typically from 
one  domain to another under some protocol, and the action field, <action>, typically 
takes the values “allow” or “deny” thus specifying if the traffic is to be allowed to 
flow or stopped.  The semantics of the firewall policy is given operationally and it is 
crucially dependent on the total ordering of its rules. The ordering position of a rule is 
given by a (unique) number in <order> and for a given packet the firewall will check 
the rules in ascending order.  The action field of the first rule whose network 
conditions are satisfied by the packet determines if it will be allowed or blocked. All 
subsequent rules are ignored. 

  In this paper we propose a technique for specifying security requirements within 
an argumentation based framework for Logic Programming with Priorities (LPP).  
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This allows us to specify and use high-level abstractions for network entities, e.g. 
protocols, applications, sub-networks.  It also allows us to specify relative ordering 
between security requirements.  The framework supports automatic generation of 
firewall configuration rules that satisfy the requirements including the relative 
ordering.  Additionally, we demonstrate that the framework can detect a range of 
inconsistencies, including the anomaly types identified by  Al-Shaer and Hamed [1], 
and also perform anomaly resolution.   

Figure 1 shows an example system taken from [1] where a firewall is used to 
protect hosts in an enterprise network (acme.com) from malicious network traffic 
together with the set of rules that control the behaviour of the firewall.  In this 
example, Rules 8 and 11 implement the default security requirement that all traffic 
should be blocked unless there is a specific requirement to allow specific types of 
traffic.  These exception cases to the default requirement are implemented by 
specifying firewall policy rules that have a higher priority ordering than the default 
policy rule.  For example, Rule 7 implements the requirement to “allow FTP 
connections from hosts in the coyote.com network to the host ftp.acme.com” and Rule 
1 and 2 to “allow all HTTP requests from coyote.com to acme.com except those from 
the host wiley.coyote.com”.   

INTERNET
*.*.*.*

acme.com
161.120.33.*

coyte.com
140.192.37.*

wiley
140.192.37.20

tricky
140.192.37.30

161.120.33.40
fudd

blockany*.*.*.*any*.*.*.*udp11

allow53161.120.33.40any*.*.*.*udp10

allow53161.120.33.40any140.192.37.*udp9

blockany*.*.*.*any*.*.*.*tcp8

allow21161.120.33.40any140.192.37.*tcp7

allow21*.*.*.*any140.192.37.*tcp6

block21*.*.*.*any140.192.37.30tcp5

block80161.120.33.40any140.192.37.*tcp4

allow80161.120.33.40any*.*.*.*tcp3

allow80*.*.*.*any140.192.37.*tcp2

block80*.*.*.*any140.192.37.20tcp1

ActionDst PortDst IPSrc PortSrc IPPtrclOrder

 

Fig. 1. Example network and associated firewall policy rules [1] 

In this example, the translation of these requirements into the rules shown is done 
manually and depends on administrators’ knowledge of the low-level network 
topology and protocols and also having the expertise to assign the correct priority 
order to the rules.  This method of policy specification has the added disadvantage 
that no link is maintained between the security requirements and the policy rules that 
implement them.  This makes policy specifications hard to understand and it is easy 
for the administrator to make errors, particularly when dealing with large distributed 
systems that involve many networks, hosts and applications.  Some firewall solution 
vendors have made an attempt to support high-level abstractions by mapping named 
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traffic classes to low-level properties such as host IP addresses, port numbers and 
protocols [2].  However, this process involves a significant amount of manual effort 
on the part of the administrator and the tools provided do not maintain any link 
between the security requirements and the underlying policy rules. 

Another shortcoming with existing approaches to firewall policy specification is 
the limited support for automated analysis that verifies that the specification satisfies 
desired security properties and does not contain any inconsistency.  Work done by Al-
Shaer et al. goes some way to addressing this problem by identifying a number of 
inconsistency types (or anomaly types) and defining an algorithm for detecting the 
presence of these inconsistencies [1].  Whilst this technique has been extended to 
detect inconsistency in complex scenarios that involve distributed firewalls, it only 
detects a fixed set of inconsistency types [3].  Additionally, given that the analysis 
algorithm operates on the low-level firewall policy rules, it is not able to provide any 
information about the reasons for an anomaly to exist. 

The rest of this paper is organised as follows.  In the next section we present 
information regarding the capabilities of LPP framework together with examples of 
how the notation can be used to specify network abstractions and security 
requirements.  In section 3 we present the different types of analysis supported by our 
technique followed by a discussion of our work in section 4.  We describe how our 
work compares with related research in the field in section 5 before presenting our 
conclusions and plans for further work in section 6. 

2. Security Requirements and the Argumentation Framework 

One of the objectives of our work is to provide administrators with the ability to 
specify their security requirements using high-level abstractions that are closer to their 
natural specifications.  We wish to do this in the context of a formal reasoning 
framework that supports the prioritised ordering of firewall rules and also provides 
automated analysis capabilities.  In this section we present a formal language based 
on an argumentation framework that is capable of representing background 
information regarding the network, hosts and traffic types together with network 
security requirements and relative priorities between rules.   

Argumentation has been shown to be a useful framework for formalizing non-
monotonic reasoning and other forms of reasoning [4-7]. In general, an argumentation 
framework is a pair <T,A> where T is a theory in some background (monotonic) 
logic, equipped with an entailment relation, ╞, and A is a binary relation on the 
subsets of T. These subsets of T form the arguments of the framework and A is a 
non-symmetric attacking relation between arguments. For any two arguments A1 
and A2 we say that A1 attacks A2 when (A1,A2) belongs to the attacking relation A. 
In this context, an argument A1 attacks A2 if, given the same background knowledge, 
A1 supports a conclusion that is incompatible with a conclusion supported by A2 and 
A1 is defined to be stronger than A2.  Argumentation reasoning is given through the 
notion of an admissible argument, i.e. an argument that counterattacks another 
argument.  The formal definition of the argumentation framework is presented in [4, 
6].   
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2. 1 Representing Security Requirements and Firewall Rules 

In the specific argumentation reasoning framework we use in this paper, a theory T 
is represented in the background logic (L, ╞), where the language L consists of 
(extended) logic programming rules of the form: 

 Name: L � L 1, . . . , L n, (n ≥ 0). 

Here, L,L1, . . ., Ln are positive or negative literals. A negative literal is a literal of the 
form ¬A, where A is an atom. As usual in Logic Programming a rule containing 
variables is a compact representation of all the ground rules obtained from this under 
the Hebrand universe. Each ground rule has a unique (parametric) name, Name, given 
at the front of the rule.  Using this notation we can specify a security requirement by 
defining a rule with name req(…)  that associates a given action with packets that 
match the source, destination and traffic type.  For example, the requirement to 
“allow HTTP requests from the coyote.com network to web servers in the acme.com 
network” would be defined as follows: 

 req(allow_http_coyote, allow, Pkt): 
 action(allow, Pkt) � 
   packetFrom(coyote, Pkt), packetTo(Server, Pkt), 
   property(‘web’, host, Server), traffic(http, Pkt ). 

The packet terms in the above rule are defined using 5-tuples of the form 
pkt(Protocol, SourceIP, SourcePort, DestIP, DestPor t) .  In the above 
definition, the packetFrom(…)  and packetTo(…)  predicates are used to map the name 
of a source or destination entity to the appropriate IP address fields of the packet.  In 
the above definition, the packetFrom(…)  and packetTo(…)  predicates are used to map 
the name of a source or destination entity to the appropriate IP address fields of the 
packet.  These predicates are defined as follows: 

 pktSource(SrcIP): 
 packetFrom(From, pkt(_,SrcIP, _, _, _)) � ipaddr(From, SrcIP). 

 pktDest(DstIP): 
 packetTo(To, pkt(_, _, _, DstIP, _)) � ipaddr(To, DstIP). 

The ipaddr(…)  predicate is used to define background information regarding the 
network, namely the IP address of a given network entity.  This is described in more 
detail in the next section. 

 The overall theory T is separated into two parts: the basic part and the strategy 
part. The basic part contains rules (of the form given above) whose conclusions, L, 
are any literal except the special predicate, prefer(…) , which is the only predicate 
that can appear in the conclusion of rules in the strategy part. Hence rules in the 
strategy part take the special form 

 Name: prefer(rule1, rule2) � L 1, . . . ,L n, (n ≥ 0). 

where rule1 and rule2 are the names of any other two rules in the theory.  A rule of 
this form then means that under the conditions L1, . . . ,Ln, the rule with name, rule1, 
has priority over the rule with name, rule2. The role of this priority relation is 
therefore to encode locally the relative strength of (argument) rules in the theory. The 
priority relation prefer(…)  is required to be irreflexive. The rules rule1  and rule2  
can themselves be rules expressing priority between other rules and hence the 
framework allows higher-order priorities.  
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We can use the prefer(…)  predicate to defined security requirements express a 
precedence relationship between two simpler requirements.  For example, the 
administrator might specify a requirement to “block any traffic except HTTP requests 
to fudd.acme.com”.  This type of requirement can be composed from “block any 
traffic”  and “allow HTTP requests to fudd.acme.com” together with the addition of a 
rule that makes the latter requirement take precedence.  The two simple requirements 
would be specified as follows: 

 req(block_any, block, Pkt): 
 action(block, Pkt) �   
   packetFrom(any, Pkt), packetTo(any, Pkt), traffi c(any, Pkt). 

 req(allow_http_fudd, allow, Pkt): 
 action(allow, Pkt) �   
   packetFrom(any, Pkt), packetTo(fudd, Pkt), traff ic(http, Pkt). 

This is followed by the precedence relationship between these requirements using 
the prefer(…)  predicate: 

  order(allow_http_fudd, block_any): 
 prefer( req(allow_http_fudd, allow, Pkt)), 
        req(block_any, block, Pkt) ). 

In addition to representing security requirements, the notation described can be 
used to specify legacy firewall rules, denoted by the term fwr(Order, Action, Pkt) .  
For example, the first rule shown below represents Rule 9 given in Figure 1.  Notice 
that we use finite domain constraints to specify IP address and port ranges: 

 fwr(9, allow, pkt(udp,ip(140,197,37,D),SP,ip(161,120,33,40), 53)): 
 action(allow, pkt(udp,ip(140,197,37,D),SP,ip(161,12 0,33,40), 53)) 
  � D in 0..255, SP in 1..65536. 

  order(N1, N2): 
 prefer(fwr(N1, A1, Pkt), fwr(N2, A2, Pkt)) � N1 < N2. 

The second rule shows how we can use the prefer(…)  predicate to specify the 
ordering of legacy firewall rules.  In this fashion our formal framework can combine 
the requirements specifications described above with legacy firewall rules.  

2.2 Representing Background Information 

We can separate out an auxiliary part, T0, of a given theory, T, from which the other 
rules can draw background information in order to satisfy some of their conditions. 
The reasoning of the auxiliary part of a theory is independent of the main 
argumentation-based preference reasoning of the framework and hence any 
appropriate logic can be used.  In the context of this paper, we can use this feature to 
specify subnets, hosts and traffic types in a network using the following three 
predicates:   

 network(Name, [Properties]). 
   host(Name, [Properties]). 
  ipaddr(Name, ip(A, B, C, D)). 

The network(…)  predicate defines a named network (e.g. acme.com, coyote.com 
etc) together with a list of associated properties (e.g. wireless, WEP, etc.).  Similarly, 
the host(…)  predicate defines a host name together with a list of properties associated 
with that host.  Finally, the ipaddr(…)  predicate associates a particular host (or 
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network) with an IP address (or address range).  The ip(…)  function has four 
arguments that correspond to each byte of a 32-bit IP address. Using these predicates, 
the ‘acme.com’ network  and ‘fudd.acme.com’ host in the example (Figure 1) would 
be specified as follows: 

 network(acme, [‘acme.com’, ‘wired’]). 
 ipaddr(acme, ip(161, 120, 33, D)) � D in 0..255. 

 host(fudd, [‘fudd.acme.com’, ‘web’, ‘ftp’, ‘dns’]).  
 ipaddr(fudd, ip(161, 120, 33, 40)). 

We use the finite domain constraint 0..255 to specify the range of values for the 
‘acme’ network.  Notice that each rule in the above definitions is prefixed with a 
parameterised name, which becomes part of the arguments for the answer derived if 
the rule forms part of the theory that supports a given goal.  For example, if we query 
the system for the available networks, each answer will be accompanied by an 
argument set that includes the term network(…) , identifying the network rule that 
defines each network.  We can also specify a auxiliary predicate, property(…) , which 
can be used to identify the network elements that have a given property: 

 property(Prop, network, Element) 
  �  network(Element, [Props]), member(Prop, Props). 

 property(Prop, host, Element)  
  �  host(Element, [Props]), member(Prop, Props). 

In the above definition, the member(Property, Properties) predicate holds if the 
property denoted by the first parameter is a member of the list denoted by the second.  
The property(…)  predicate can also be used to express higher-level, composite 
properties.  For example, the notion that all Linux hosts on a wired network are 
considered to be secure can be expressed as follows: 

 property(secure, host, Element)  
  �  property(wired, network, Network), 
    property(Network, host, Element), 
    property(linux, host, Element). 

Finally we define a predicate, traffic(Name, Pkt)  that associates the protocol 
and ports fields of an IP packet with a given type of traffic.  This predicate can be also 
be used to define ranges of ports.  For example, we can define the following rules to 
specify an application called ‘http’ which matches TCP packets from any non-
reserved port (1024-65536) to port 80; and a generic application called ‘any’ which 
matches packets containing any port number and protocol: 

 traffic(http, pkt(Prtcl, SrcIP, SP, DstIP, DP)) � 
   Prtcl=tcp, SP in 1024..65536, DP = 80. 

 traffic(any, pkt(Prtcl, SrcIP, SP, DstIP, DP))) � 
   (Prtcl=tcp; Prtcl=udp), SP in 1..65536, DP in 1. .65536. 

It is important to note that specifying this background information is a one-time 
task that can be automated using host/service discovery tools.  Of course the 
specification will have to be updated if there are any changes in the system, but this 
process can also be automated.   

In addition to background information regarding the network, the auxiliary part of 
our theory also contains the definition of what constitutes a conflict (over and above 
the standard conflict of classical negation, i.e. between an atom, A and its negation 
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¬A). This is given through the definition of an auxiliary predicate, complement(…) , 
which is of the form: 

 complement(L 1, L 2) � B. 

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B. 
Typically, the conditions B are empty and the definition of the complement(…)  
predicate is kept simple.  Also we will assume that the conditions of any rule in the 
theory do not refer to the predicate prefer(…)  thus avoiding self-reference problems. 
Note also that the definition of complement(…)  always includes that any ground atom, 
prefer(rule1, rule2) , is incompatible  with the atom prefer (rule2, rule1)  and 
vice-versa.  In the context of firewall policies, we would define the actions allow and 
block to be complementary using the following rule: 

 complement(action(allow, _), action(block, _)). 

The logical framework for argumentation and preference reasoning described here 
has been realised in the GORGIAS tool developed at the University of Cyprus [8] and 
has been used to implement the examples and generate the results presented in this 
paper.  This tool provides a query, prove([L 1, L 2, …, L n], Args) , which generates 
the set of admissible arguments, Args, that support the conjunction of terms L1, …, Ln 
for a given theory.  In order to support the analysis of security requirements and 
firewall policies, we define the following auxiliary query to determine if a particular 
packet will be allowed or blocked by a firewall together with the rule (or requirement) 
that causes this decision and the supporting arguments: 

 packet_action(Action, Pkt, Rule, Args) � 
   prove([action(Action, Pkt)], Args), member(Rule,  Args), 
   (Rule=requirement(R, Action, Pkt); Rule=fwr(N, A ction, Pkt)). 

3. Analysing Firewall Policies 

As a network grows, the task of managing the network security policies quickly 
becomes unwieldy.  Therefore it is very important to provide administrators with 
support to analyse the policy specification and ensure that desired properties hold.  
These analysis tasks can be divided into the following categories: 

1. Anomaly Detection: Analysing the policy specification for potential anomalies. 

2. Property Checking: Performing “what-if” analysis to determine if a given class 
of traffic will be forwarded or blocked.  For example, “Which packets are allowed 
to reach the host fudd.acme.com?”  This type of query can also be used to verify 
that the policy specification satisfies desired behaviour.  

3. Anomaly Resolution: Determining the correct ordering of policy rules to ensure 
that anomalies are avoided (i.e. ensuring that rules related to exception cases are 
given a higher precedence than general rules) 

3.1 Anomaly Detection 

Al-Shaer et al [1] have identified four firewall policy anomaly types – shadowing, 
generalisation, correlation and redundancy and here we show how these anomalies 
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can be detected using the argumentation logic framework.  From the description of 
the various anomaly types it is clear that the key determinants of an anomaly is 
whether the packets that match a rule are a subset (or superset) of the packets matched 
by another rule; and the relative ordering of the rules.  For example, rule R2 is said to 
be shadowed by R1 if the rules specify incompatible actions, R1 has preference over 
R2 and every packet that matches R2 is matched by R1.  In order to detect this type of 
anomaly we define the following rule: 

 anomaly(shadow, R1, R2, Pkt1) � 
  packet_action(A1, Pkt1, R1, _), 
  complement(action(A1,_,_), action(A2,_,_)), 
  packet_action(A2, Pkt2, R2, _), 
  match(subset, Pkt1, Pkt2). 

The above rule identifies a requirement R1 where the matching packets, Pkt1, are a 
subset of the packets that match another requirement R2 and R2 defines an 
incompatible action.  The preference reasoning capabilities of the LPP framework 
ensures that the above query identifies rules derived from R2 that have higher 
precedence than rules derived from R1.  Rules that participate in a generalisation 
anomaly would cause a shadow anomaly if their relative order was reversed.  We use 
this property to define the following rule to detect this type of anomaly: 

 anomaly(generalisation, R1, R2, Pkt2) � 
  packet_action(A1, Pkt1, R1, _), 
  complement(action(A1,_,_), action(A2,_,_)), 
  packet_action(A2, Pkt2, R2, _), 
  match(subset, Pkt2, Pkt1). 

The above definition identifies a policy rule derived from requirement R2 that 
takes precedence over a rule derived from requirement R1, where the packets matched 
by R2 are a subset of those matched by R1 and the actions of R1 and R2 are 
complementary.   

Correlation anomalies occur when two rules with complementary actions match the 
same packets, and the rules are not part of a shadowing or generalisation anomaly.  
These can be detected using the following rule: 

 anomaly(correlation, R1, R2, Pkt) � 
  packet_action(A1, Pkt, R1, _), 
  complement(action(A1,_,_), action(A2,_,_)), 
  packet_action(A2, Pkt, R2, _), 
  ¬ anomaly(generalisation, R1, R2, _), 
  ¬ anomaly(generalisation, R2, R1, _), 
  ¬ anomaly(shadow, R1, R2, _). 

Redundancy anomalies differ from the other types in that they involve rules that 
specify the same action.  We define the following rule to detect this type of anomaly:   

 anomaly(redundant, R1, R2, Pkt1) � 
   packet_action(A, Pkt1, R1, _), packet_action(A, Pkt2, R2, _), 
   R1 \== R2, match(subset, Pkt1, Pkt2). 

Using these rules, we can detect all the anomalies in a specification using a single 
high-level query.  For example, performing such a query on the example system 
shown in Figure 1 would generate the following result: 

?- findall(Type-(R1, R2), anomaly(Type, R1, R2, _), List). 
List =  shadow-(deny_coyote_http_fudd,allow_coyote_http) 
        shadow-(deny_coyote_http_fudd,allow_http_fudd) 
        generalise-(deny_wiley_http,allow_coyote_http) 
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     ... 
        generalise-(allow_udpdns_fudd,deny_all)  
        correlated-(deny_wiley_http,allow_http_fudd)  
        correlated-(deny_tricky_ftp,allow_coyote_ftp_fudd) 
        redundant- (allow_coyote_ftp_fudd, allow_coyote_ftp) 
        redundant- (allow_coyote_udpdns_fudd,allow_udpdns_fudd) 

3.2 Property Checking 

In addition to checking for the anomaly types identified in the literature, the formal 
framework for firewall policy specification described in this paper is a general one 
that can be used to check if a specification satisfies other properties.  For example, the 
administrator might wish to verify which packets are allowed to reach the host 
fudd.acme.com.  This property would be checked by the following high-level query: 

?- packet_action(allow, Pkt, Rule, Args), packetTo(fudd, Pkt). 
 
       Rule = allow_coyote_http 
     Packet = pkt(tcp, ip(140,192,37,D1), SP, ip(161,120,33,40), 80) 
         D1 = 0..255, SP = 1024..65536 
Arguments:  
requirement(allow_coyote_http, allow, pkt(tcp, coyo te, SP, any, 80)). 
pktDst(any,ip(161,120,33,40)). 
pktSrc(coyote,ip(140,192,37,D1)). 
... 

The arguments explain that a TCP packet from 140.192.37.*-port:1024-65536 to 
161.120.33.40-port:80 is allowed because the requirement ‘allow_coyote_http_allow’ 
specifies that packets from the ‘coyote.com’ network to port 80 of any host should be 
allowed.  Furthermore, the arguments show how the IP address and port ranges in the 
allowed packet match the IP addresses of ‘coyote.com’ and ‘fudd’.   

Notice that the use of the finite domain constraints for IP address and port ranges 
means that the query returns an expression that describes all the packets that are 
allowed to reach the host ‘fudd’.  The ability to consider the relative priorities 
between security requirements and also provide this type of coverage of the potential 
packet space when reporting results is possible because we are using a logic 
programming based approach that supports preference reasoning. 

3.3 Anomaly Resolution 

Of the anomaly types defined in the previous section, only redundancies and 
shadowing anomalies are considered to be errors.  Of these, shadowing anomalies can 
be resolved by reversing the relative ordering of the two rules.  This can be expressed 
in our framework using a ‘higher-order’ preference reasoning rule as follows: 

resolve(shadow, R1, R2): 
prefer(R1, R2) � anomaly(shadow, R1, R2, _). 

The above rule states that preference should be given to rule R1 over R2, i.e. the 
shadowed rule is given higher priority.  Redundancy anomalies on the other hand can 
be resolved by ensuring the redundant rule has lower priority.  This resolution process 
is specified in our formal framework as follows: 
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resolve(redundancy, R1, R2): 
prefer(R2, R1) � anomaly(redundant, R1, R2, _). 

Here the anomaly(…)  predicate holds if R1 is redundant to R2 and the prefer(…)  
predicate defines that R2 should take precedence over R1.  In our framework, 
performing the resolution actions shown above will remove any redundancy and 
shadowing anomalies from the specification.  Additionally, the decision to perform a 
particular resolution action will be explained with a set of arguments. 

4. Discussion 

In the study of the analysis of firewall policies we have shown specifically that the 
various types of anomalies in firewall policies, identified separately in the literature, 
can be captured naturally under the same and unified definition based on the standard 
notion of an admissible argument in Logic Programming with Priorities (LPP). This 
high level definition means (a) that we are more complete in capturing the notion of 
anomaly and (b) that our definitions remain invariant as we further develop the types 
of policy supported by the notation, e.g. as we consider extensions of policies for 
distributed firewalls.  The high-level of expressivity of the LPP framework, 
particularly its ability to represent preference orderings which can be conditional on 
some background properties means that the formalism can accurately capture the 
behaviour of a firewall where policies are specified with an explicit priority order.  
The LPP framework can be used to detect all the anomaly types identified in the 
literature and also supports other types of property checking, thus allowing an 
administrator to verify the behaviour of a firewall that is controlled by a given set of 
requirements.  Whilst we have yet to complete experiments on large policy sets, the 
complexity of the argumentation reasoning framework for the restricted type of theory 
described in this paper has been shown to be P-complete [9].  We are working to 
validate the scalability of our approach as part of our ongoing research efforts. 

In addition to experimenting with larger policy sets, we also hope to work on more 
complex scenarios involving multiple firewalls in the network.  In such a system, 
where policies will be distributed across the network the problem of the existence of 
anomalies is more severe as there are more possibilities for conflicts to occur. We can 
have situations where one component decides to accept traffic whereas another 
component decides to deny it. For example, an upstream firewall blocking a traffic 
that is permitted by a downstream firewall is a type of inter-firewall shadowing 
anomaly. In a “classical” approach to anomaly detection the definition of this 
anomaly requires a detailed (and somewhat ad hoc) examination of the pairs of rules 
from the two firewalls. In our declarative approach this anomaly falls under the same 
definition given above.  

5. Related Work 

Work presented by Wool et al., proposes a high-level language for specifying network 
information and firewall policies that allows firewall configuration to be performed at 
an abstraction level that is closer to high-level programming.  This work has led to the 
development of a number of tools that support offline firewall policy analysis and 
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management [10].  However, the analysis process does not detect specific anomaly 
types such as shadowing and redundancy.  

Uribe and Cheung have developed a technique for automating the analysis of 
firewall and network intrusion detection systems that uses constraint logic 
programming to model the networks and policies [11].  The use of finite domain 
constraints to specify IP address and port ranges means that the analysis process 
covers all IP address and port combinations for potential problems.  However, the 
technique does not support specification of explicit priorities between firewall policy 
rules and the tool does not provide administrators with any explanation to support the 
analysis results generated. 

Al Shaer et al. and Yuan et al., have focussed on tools and techniques for analysing 
legacy firewall policies for networks with centralised and distributed firewalls [1, 3, 
12].  We use the classification of anomalies into the types: shadow, correlation, 
generalisation and redundancy anomalies presented in [1] to specify the analysis rules 
used in the framework presented in this paper.  One shortcoming of their approach is 
the dependence on legacy firewall policies in order to perform anomaly detection and 
resolution.  In contrast, our approach allows network security requirements to be 
specified using high-level notations whilst still being capable of a range of analysis 
tasks such as anomaly detection, resolution and property checking.  Additionally by 
using an argumentation reasoning framework, our approach has the advantage that the 
administrator is given an explanation of the analysis results and resolution actions. 

6. Conclusions and Future Work 

We have presented an approach to specifying network security requirements that is 
based on Argumentation for Logic Programming with Priorities (LPP).  The use of 
logic programming allows the specification to include high-level abstractions such as 
networks, hosts, traffic types and their associated properties.  This means that 
administrators can specify their network security requirements in more familiar terms, 
without having to know the exact IP address and port ranges for a given traffic flow.  
We have shown that the technique is capable of performing a range of analysis tasks, 
from detecting the firewall anomaly types identified in the literature to performing 
more general property checking and conflict resolution.   The use of LPP allows 
preferences to be encoded, thus allowing complex reasoning over the relative 
priorities between rules.  Additionally, the encoded preferences can be conditional on 
arbitrary system properties, an approach that allows greater flexibility than simple 
assigned priorities between rules.  Also, because LPP is implemented using 
argumentation reasoning, the results of performing queries are enhanced by 
explanations containing the rules that support a particular conclusion.  This 
information is particularly helpful to the user in understanding the reason for a traffic 
flow to be allowed or blocked by the firewall.  The current implementation of the 
technique presented in this paper focuses on security requirements specification for 
firewalls.  However, given an appropriate formalisation of the underlying system, the 
use of LPP can be extended to other application domains, such as network QoS 
management.    

Our system is implemented using the GORGIAS tool running in a standard Prolog 
environment.  Given a formal description of the network elements and security 
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requirements, it provides support for checking general properties, including checking 
for the presence of the anomaly types identified in the literature, and also supports 
anomaly resolution.  At present we are focused on extending the tool to provide 
automated generation of ‘anomaly-free’ operational firewall policies.  Additionally 
are developing a GUI that will shield the administrator from the underlying formal 
notation, providing an interface that simplifies the process of defining their network 
security requirements and analysing them for consistency.  Our future work also 
includes extending the formal notation to include information required to specify and 
analyse network security requirements that are implemented using distributed 
firewalls. 
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